enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Maximum a posteriori estimation - Wikipedia

    en.wikipedia.org/wiki/Maximum_a_posteriori...

    It is closely related to the method of maximum likelihood (ML) estimation, but employs an augmented optimization objective which incorporates a prior density over the quantity one wants to estimate. MAP estimation is therefore a regularization of maximum likelihood estimation, so is not a well-defined statistic of the Bayesian posterior ...

  3. Maximum likelihood estimation - Wikipedia

    en.wikipedia.org/wiki/Maximum_likelihood_estimation

    In statistics, maximum likelihood estimation (MLE) is a method of estimating the parameters of an assumed probability distribution, given some observed data. This is achieved by maximizing a likelihood function so that, under the assumed statistical model , the observed data is most probable.

  4. Expectation–maximization algorithm - Wikipedia

    en.wikipedia.org/wiki/Expectation–maximization...

    In statistics, an expectation–maximization (EM) algorithm is an iterative method to find (local) maximum likelihood or maximum a posteriori (MAP) estimates of parameters in statistical models, where the model depends on unobserved latent variables. [1]

  5. Viterbi algorithm - Wikipedia

    en.wikipedia.org/wiki/Viterbi_algorithm

    The Viterbi algorithm is a dynamic programming algorithm for obtaining the maximum a posteriori probability estimate of the most likely sequence of hidden states—called the Viterbi path—that results in a sequence of observed events.

  6. M-estimator - Wikipedia

    en.wikipedia.org/wiki/M-estimator

    Another popular M-estimator is maximum-likelihood estimation. For a family of probability density functions f parameterized by θ, a maximum likelihood estimator of θ is computed for each set of data by maximizing the likelihood function over the parameter space { θ } .

  7. Baum–Welch algorithm - Wikipedia

    en.wikipedia.org/wiki/Baum–Welch_algorithm

    The Baum–Welch algorithm, the primary method for inference in hidden Markov models, is numerically unstable due to its recursive calculation of joint probabilities. As the number of variables grows, these joint probabilities become increasingly small, leading to the forward recursions rapidly approaching values below machine precision.

  8. Computational phylogenetics - Wikipedia

    en.wikipedia.org/wiki/Computational_phylogenetics

    Maximum Likelihood (also likelihood) optimality criterion is the process of finding the tree topology along with its branch lengths that provides the highest probability observing the sequence data, while parsimony optimality criterion is the fewest number of state-evolutionary changes required for a phylogenetic tree to explain the sequence data.

  9. Metropolis–Hastings algorithm - Wikipedia

    en.wikipedia.org/wiki/Metropolis–Hastings...

    The Metropolis-Hastings algorithm sampling a normal one-dimensional posterior probability distribution. In statistics and statistical physics, the Metropolis–Hastings algorithm is a Markov chain Monte Carlo (MCMC) method for obtaining a sequence of random samples from a probability distribution from which direct sampling is difficult. New ...