Search results
Results from the WOW.Com Content Network
In information theory, linguistics, and computer science, the Levenshtein distance is a string metric for measuring the difference between two sequences. The Levenshtein distance between two words is the minimum number of single-character edits (insertions, deletions or substitutions) required to change one word into the other.
The closest pair of points problem or closest pair problem is a problem of computational geometry: given points in metric space, find a pair of points with the smallest distance between them. The closest pair problem for points in the Euclidean plane [ 1 ] was among the first geometric problems that were treated at the origins of the systematic ...
A string metric provides a number indicating an algorithm-specific indication of distance. The most widely known string metric is a rudimentary one called the Levenshtein distance (also known as edit distance). [2] It operates between two input strings, returning a number equivalent to the number of substitutions and deletions needed in order ...
Some instances of the smallest bounding circle. The smallest-circle problem (also known as minimum covering circle problem, bounding circle problem, least bounding circle problem, smallest enclosing circle problem) is a computational geometry problem of computing the smallest circle that contains all of a given set of points in the Euclidean plane.
Lloyd's algorithm is usually used in a Euclidean space. The Euclidean distance plays two roles in the algorithm: it is used to define the Voronoi cells, but it also corresponds to the choice of the centroid as the representative point of each cell, since the centroid is the point that minimizes the average squared Euclidean distance to the ...
It can be extended to infinite-dimensional vector spaces as the L 2 norm or L 2 distance. [25] The Euclidean distance gives Euclidean space the structure of a topological space, the Euclidean topology, with the open balls (subsets of points at less than a given distance from a given point) as its neighborhoods. [26]
Euclidean distance; Manhattan distance; Minkowski distance; Chebyshev distance; Similarity between strings. For comparing strings, there are various measures of string similarity that can be used. Some of these methods include edit distance, Levenshtein distance, Hamming distance, and Jaro distance. The best-fit formula is dependent on the ...
More formally, for any language L and string x over an alphabet Σ, the language edit distance d(L, x) is given by [14] (,) = (,), where (,) is the string edit distance. When the language L is context free , there is a cubic time dynamic programming algorithm proposed by Aho and Peterson in 1972 which computes the language edit distance. [ 15 ]