Search results
Results from the WOW.Com Content Network
An osteocyte, an oblate shaped type of bone cell with dendritic processes, is the most commonly found cell in mature bone. It can live as long as the organism itself. [1] The adult human body has about 42 billion of them. [2] Osteocytes do not divide and have an average half life of 25 years.
In the hollow within bones are many other cell types of the bone marrow. Components that are essential for osteoblast bone formation include mesenchymal stem cells (osteoblast precursor) and blood vessels that supply oxygen and nutrients for bone formation. Bone is a highly vascular tissue, and active formation of blood vessel cells, also from ...
The matrix is hardened by the binding of inorganic mineral salt, calcium phosphate, in a chemical arrangement known as bone mineral, a form of calcium apatite. [8] [9] It is the mineralization that gives bones rigidity. Bone is actively constructed and remodeled throughout life by special bone cells known as osteoblasts and osteoclasts.
Bone is broken down by osteoclasts, and rebuilt by osteoblasts, both of which communicate through cytokine (TGF-β, IGF) signalling. Ossification (also called osteogenesis or bone mineralization) in bone remodeling is the process of laying down new bone material by cells named osteoblasts. It is synonymous with bone tissue formation. [1]
Bone marrow is a semi-solid tissue found within the spongy (also known as cancellous) portions of bones. [2] In birds and mammals, bone marrow is the primary site of new blood cell production (or haematopoiesis ). [ 3 ]
Fibroblasts are the most common cell type in connective tissue ECM, in which they synthesize, maintain, and provide a structural framework; fibroblasts secrete the precursor components of the ECM, including the ground substance. Chondrocytes are found in cartilage and produce the cartilaginous matrix. Osteoblasts are responsible for bone formation.
However, low-grade, long-term inflammation, known as chronic inflammation, increases the risk of diseases such as heart disease, type 2 diabetes, allergies and some types of cancer, to name a few.
Mesenchymal (mesoderm origin) stem cells are undifferentiated, meaning they can differentiate into a variety of generative cells commonly known as osteochondrogenic (or osteogenic, chondrogenic, osteoprogenitor, etc.) cells. When referring to bone, or in this case cartilage, the originally undifferentiated mesenchymal stem cells lose their ...