Search results
Results from the WOW.Com Content Network
For example, a packed decimal value encoded with the bytes 12 34 56 7C represents the fixed-point value +1,234.567 when the implied decimal point is located between the fourth and fifth digits: 12 34 56 7C 12 34.56 7+ The decimal point is not actually stored in memory, as the packed BCD storage format does not provide for it.
POD return values 33–64 bits in size are returned via the EAX:EDX registers. Non-POD return values or values larger than 64-bits, the calling code will allocate space and passes a pointer to this space via a hidden parameter on the stack. The called function writes the return value to this address. Stack aligned on 4-byte boundary. stdcall ...
A fixed-point representation of a fractional number is essentially an integer that is to be implicitly multiplied by a fixed scaling factor. For example, the value 1.23 can be stored in a variable as the integer value 1230 with implicit scaling factor of 1/1000 (meaning that the last 3 decimal digits are implicitly assumed to be a decimal fraction), and the value 1 230 000 can be represented ...
Floating-point registers 0 and 2 are used for parameter passing and return values; Floating-point registers 4 and 6 are for use by the callee, and must be saved and restored by them; In z/Architecture, floating-point registers 1, 3, 5, and 7 through 15 are for use by the callee; Access register 0 is reserved for system use
A binary call option is, at long expirations, similar to a tight call spread using two vanilla options. One can model the value of a binary cash-or-nothing option, C, at strike K, as an infinitesimally tight spread, where is a vanilla European call: [1] [2]
This means that numbers that appear to be short and exact when written in decimal format may need to be approximated when converted to binary floating-point. For example, the decimal number 0.1 is not representable in binary floating-point of any finite precision; the exact binary representation would have a "1100" sequence continuing endlessly:
The Q notation is a way to specify the parameters of a binary fixed point number format. For example, in Q notation, the number format denoted by Q8.8 means that the fixed point numbers in this format have 8 bits for the integer part and 8 bits for the fraction part. A number of other notations have been used for the same purpose.
These instructions are also available in 32-bit mode, in which they operate on 32-bit registers (eax, ebx, etc.) and values instead of their 16-bit (ax, bx, etc.) counterparts. The updated instruction set is grouped according to architecture ( i186 , i286 , i386 , i486 , i586 / i686 ) and is referred to as (32-bit) x86 and (64-bit) x86-64 (also ...