Search results
Results from the WOW.Com Content Network
D. J. Newman gives a quick proof of the prime number theorem (PNT). The proof is "non-elementary" by virtue of relying on complex analysis, but uses only elementary techniques from a first course in the subject: Cauchy's integral formula, Cauchy's integral theorem and estimates of complex integrals. Here is a brief sketch of this proof.
Euclid offered a proof published in his work Elements (Book IX, Proposition 20), [1] which is paraphrased here. [2] Consider any finite list of prime numbers p 1, p 2, ..., p n. It will be shown that there exists at least one additional prime number not included in this list. Let P be the product of all the prime numbers in the list: P = p 1 p ...
Pages in category "Theorems about prime numbers" ... Proof of Bertrand's postulate; ... Prime number theorem;
In number theory, Selberg's identity is an approximate identity involving logarithms of primes named after Atle Selberg. The identity, discovered jointly by Selberg and Paul Erdős, was used in the first elementary proof for the prime number theorem.
Although the proof of Dirichlet's Theorem makes use of calculus and analytic number theory, some proofs of examples are much more straightforward. In particular, the proof of the example of infinitely many primes of the form 4 n + 3 {\displaystyle 4n+3} makes an argument similar to the one made in the proof of Euclid's theorem (Silverman 2013).
The original proof of the prime number theorem was based on a weak form of this hypothesis, that there are no zeros with real part equal to 1, [97] [98] although other more elementary proofs have been found. [99]
This property is the key in the proof of the fundamental theorem of arithmetic. [note 2] It is used to define prime elements, a generalization of prime numbers to arbitrary commutative rings. Euclid's lemma shows that in the integers irreducible elements are also prime elements. The proof uses induction so it does not apply to all integral domains.
No elementary proof of the prime number theorem is known, and one may ask whether it is reasonable to expect one. Now we know that the theorem is roughly equivalent to a theorem about an analytic function, the theorem that Riemann's zeta function has no roots on a certain line. A proof of such a theorem, not fundamentally dependent on the ...