enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lagrange multiplier - Wikipedia

    en.wikipedia.org/wiki/Lagrange_multiplier

    The Lagrange multiplier theorem states that at any local maximum (or minimum) of the function evaluated under the equality constraints, if constraint qualification applies (explained below), then the gradient of the function (at that point) can be expressed as a linear combination of the gradients of the constraints (at that point), with the ...

  3. Big M method - Wikipedia

    en.wikipedia.org/wiki/Big_M_method

    However, to apply it, the origin (all variables equal to 0) must be a feasible point. This condition is satisfied only when all the constraints (except non-negativity) are less-than constraints and with positive constant on the right-hand side. The Big M method introduces surplus and artificial variables to convert all inequalities into that form.

  4. Karush–Kuhn–Tucker conditions - Wikipedia

    en.wikipedia.org/wiki/Karush–Kuhn–Tucker...

    Consider the following nonlinear optimization problem in standard form: . minimize () subject to (),() =where is the optimization variable chosen from a convex subset of , is the objective or utility function, (=, …,) are the inequality constraint functions and (=, …,) are the equality constraint functions.

  5. Mathematical optimization - Wikipedia

    en.wikipedia.org/wiki/Mathematical_optimization

    Mathematical optimization (alternatively spelled optimisation) or mathematical programming is the selection of a best element, with regard to some criteria, from some set of available alternatives. [ 1 ] [ 2 ] It is generally divided into two subfields: discrete optimization and continuous optimization .

  6. Nonlinear programming - Wikipedia

    en.wikipedia.org/wiki/Nonlinear_programming

    An optimization problem is one of calculation of the extrema (maxima, minima or stationary points) of an objective function over a set of unknown real variables and conditional to the satisfaction of a system of equalities and inequalities, collectively termed constraints.

  7. Optimization problem - Wikipedia

    en.wikipedia.org/wiki/Optimization_problem

    g i (x) ≤ 0 are called inequality constraints; h j (x) = 0 are called equality constraints, and; m ≥ 0 and p ≥ 0. If m = p = 0, the problem is an unconstrained optimization problem. By convention, the standard form defines a minimization problem. A maximization problem can be treated by negating the objective function.

  8. Constrained optimization - Wikipedia

    en.wikipedia.org/wiki/Constrained_optimization

    The bucket elimination algorithm can be adapted for constraint optimization. A given variable can be indeed removed from the problem by replacing all soft constraints containing it with a new soft constraint. The cost of this new constraint is computed assuming a maximal value for every value of the removed variable.

  9. Quasi-Newton method - Wikipedia

    en.wikipedia.org/wiki/Quasi-Newton_method

    In numerical analysis, a quasi-Newton method is an iterative numerical method used either to find zeroes or to find local maxima and minima of functions via an iterative recurrence formula much like the one for Newton's method, except using approximations of the derivatives of the functions in place of exact derivatives.