enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Pivot element - Wikipedia

    en.wikipedia.org/wiki/Pivot_element

    The pivot or pivot element is the element of a matrix, or an array, which is selected first by an algorithm (e.g. Gaussian elimination, simplex algorithm, etc.), to do certain calculations. In the case of matrix algorithms, a pivot entry is usually required to be at least distinct from zero, and often distant from it; in this case finding this ...

  3. Gaussian elimination - Wikipedia

    en.wikipedia.org/wiki/Gaussian_elimination

    Using row operations to convert a matrix into reduced row echelon form is sometimes called Gauss–Jordan elimination. In this case, the term Gaussian elimination refers to the process until it has reached its upper triangular, or (unreduced) row echelon form.

  4. Givens rotation - Wikipedia

    en.wikipedia.org/wiki/Givens_rotation

    A Givens rotation acting on a matrix from the left is a row operation, moving data between rows but always within the same column. Unlike the elementary operation of row-addition, a Givens rotation changes both of the rows addressed by it.

  5. Row echelon form - Wikipedia

    en.wikipedia.org/wiki/Row_echelon_form

    The leading entry (that is, the left-most nonzero entry) of every nonzero row, called the pivot, is on the right of the leading entry of every row above. [ 2 ] Some texts add the condition that the leading coefficient must be 1 [ 3 ] while others require this only in reduced row echelon form .

  6. Jacobi eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Jacobi_eigenvalue_algorithm

    In order to optimize this effect, S ij should be the off-diagonal element with the largest absolute value, called the pivot. The Jacobi eigenvalue method repeatedly performs rotations until the matrix becomes almost diagonal. Then the elements in the diagonal are approximations of the (real) eigenvalues of S.

  7. Tridiagonal matrix algorithm - Wikipedia

    en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm

    In numerical linear algebra, the tridiagonal matrix algorithm, also known as the Thomas algorithm (named after Llewellyn Thomas), is a simplified form of Gaussian elimination that can be used to solve tridiagonal systems of equations.

  8. Gaussian function - Wikipedia

    en.wikipedia.org/wiki/Gaussian_function

    It is named after the mathematician Carl Friedrich Gauss. The graph of a Gaussian is a characteristic symmetric "bell curve" shape. The parameter a is the height of the curve's peak, b is the position of the center of the peak, and c (the standard deviation, sometimes called the Gaussian RMS width) controls the width of the "bell".

  9. Cardinal point (optics) - Wikipedia

    en.wikipedia.org/wiki/Cardinal_point_(optics)

    A better choice of the point about which to pivot a camera for panoramic photography can be shown to be the centre of the system's entrance pupil. [9] [10] [11] On the other hand, swing-lens cameras with fixed film position rotate the lens about the rear nodal point to stabilize the image on the film. [11] [12]