enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Symmetric function - Wikipedia

    en.wikipedia.org/wiki/Symmetric_function

    Aside from polynomial functions, tensors that act as functions of several vectors can be symmetric, and in fact the space of symmetric -tensors on a vector space is isomorphic to the space of homogeneous polynomials of degree on . Symmetric functions should not be confused with even and odd functions, which have a different sort of symmetry.

  3. Ring of symmetric functions - Wikipedia

    en.wikipedia.org/wiki/Ring_of_symmetric_functions

    The following are fundamental examples of symmetric functions. The monomial symmetric functions m α. Suppose α = (α 1,α 2,...) is a sequence of non-negative integers, only finitely many of which are non-zero. Then we can consider the monomial defined by α: X α = X 1 α 1 X 2 α 2 X 3 α 3....

  4. Symmetry in mathematics - Wikipedia

    en.wikipedia.org/wiki/Symmetry_in_mathematics

    This can occur in many ways; for example, if X is a set with no additional structure, a symmetry is a bijective map from the set to itself, giving rise to permutation groups. If the object X is a set of points in the plane with its metric structure or any other metric space , a symmetry is a bijection of the set to itself which preserves the ...

  5. Symmetric polynomial - Wikipedia

    en.wikipedia.org/wiki/Symmetric_polynomial

    The example shows that whether or not the expression for a given monomial symmetric polynomial in terms of the first n power sum polynomials involves rational coefficients may depend on n. But rational coefficients are always needed to express elementary symmetric polynomials (except the constant ones, and e 1 which coincides with the first ...

  6. List of mathematical functions - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_functions

    Thomae's function: is a function that is continuous at all irrational numbers and discontinuous at all rational numbers. It is also a modification of Dirichlet function and sometimes called Riemann function. Kronecker delta function: is a function of two variables, usually integers, which is 1 if they are equal, and 0 otherwise.

  7. Symmetry - Wikipedia

    en.wikipedia.org/wiki/Symmetry

    Symmetry in physics has been generalized to mean invariance—that is, lack of change—under any kind of transformation, for example arbitrary coordinate transformations. [17] This concept has become one of the most powerful tools of theoretical physics , as it has become evident that practically all laws of nature originate in symmetries.

  8. Even and odd functions - Wikipedia

    en.wikipedia.org/wiki/Even_and_odd_functions

    A function's being odd or even does not imply differentiability, or even continuity. For example, the Dirichlet function is even, but is nowhere continuous. In the following, properties involving derivatives, Fourier series, Taylor series are considered, and these concepts are thus supposed to be defined for the considered functions.

  9. Symmetric derivative - Wikipedia

    en.wikipedia.org/wiki/Symmetric_derivative

    A well-known counterexample is the absolute value function f(x) = |x|, which is not differentiable at x = 0, but is symmetrically differentiable here with symmetric derivative 0. For differentiable functions, the symmetric difference quotient does provide a better numerical approximation of the derivative than the usual difference quotient. [3]