enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Harmonic oscillator - Wikipedia

    en.wikipedia.org/wiki/Harmonic_oscillator

    The harmonic oscillator model is very important in physics, because any mass subject to a force in stable equilibrium acts as a harmonic oscillator for small vibrations. Harmonic oscillators occur widely in nature and are exploited in many manmade devices, such as clocks and radio circuits. They are the source of virtually all sinusoidal ...

  3. Liouville's theorem (Hamiltonian) - Wikipedia

    en.wikipedia.org/wiki/Liouville's_theorem...

    To see an example where Liouville's theorem does not apply, we can modify the equations of motion for the simple harmonic oscillator to account for the effects of friction or damping. Consider again the system of N {\displaystyle N} particles each in a 3 {\displaystyle 3} -dimensional isotropic harmonic potential, the Hamiltonian for which is ...

  4. Simple harmonic motion - Wikipedia

    en.wikipedia.org/wiki/Simple_harmonic_motion

    In mechanics and physics, simple harmonic motion (sometimes abbreviated as SHM) is a special type of periodic motion an object experiences by means of a restoring force whose magnitude is directly proportional to the distance of the object from an equilibrium position and acts towards the equilibrium position.

  5. Quantum harmonic oscillator - Wikipedia

    en.wikipedia.org/wiki/Quantum_harmonic_oscillator

    The quantum harmonic oscillator is the quantum-mechanical analog of the classical harmonic oscillator. Because an arbitrary smooth potential can usually be approximated as a harmonic potential at the vicinity of a stable equilibrium point , it is one of the most important model systems in quantum mechanics.

  6. Q factor - Wikipedia

    en.wikipedia.org/wiki/Q_factor

    The Q factor is a parameter that describes the resonance behavior of an underdamped harmonic oscillator (resonator). Sinusoidally driven resonators having higher Q factors resonate with greater amplitudes (at the resonant frequency) but have a smaller range of frequencies around that frequency for which they resonate; the range of frequencies for which the oscillator resonates is called the ...

  7. Langevin equation - Wikipedia

    en.wikipedia.org/wiki/Langevin_equation

    This plot corresponds to solutions of the complete Langevin equation for a lightly damped harmonic oscillator, obtained using the Euler–Maruyama method. The left panel shows the time evolution of the phase portrait at different temperatures. The right panel captures the corresponding equilibrium probability distributions.

  8. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    A harmonic oscillator can be damped, often by friction or viscous drag, in which case energy bleeds out of the oscillator and the amplitude of the oscillations decreases over time. Also, a harmonic oscillator can be driven by an applied force, which can lead to the phenomenon of resonance .

  9. Damping - Wikipedia

    en.wikipedia.org/wiki/Damping

    Is the case where = corresponds to the undamped simple harmonic oscillator, and in that case the solution looks like ⁡ (), as expected. This case is extremely rare in the natural world with the closest examples being cases where friction was purposefully reduced to minimal values.