Search results
Results from the WOW.Com Content Network
Air–fuel ratio (AFR) is the mass ratio of air to a solid, liquid, or gaseous fuel present in a combustion process. The combustion may take place in a controlled manner such as in an internal combustion engine or industrial furnace, or may result in an explosion (e.g., a dust explosion). The air–fuel ratio determines whether a mixture is ...
The heart of the Mitsubishi's MVV system is the linear air–fuel ratio exhaust gas oxygen sensor. Compared with standard oxygen sensors, which essentially are on-off switches set to a single air/fuel ratio, the lean oxygen sensor is more of a measurement device covering the air/fuel ratio range from about 15:1 to 26:1. [19]
Mixing ratio = weight of fuel / weight of air - Expressed as mass ratio: 14.7 kg of air per 1 kg. of fuel. - Expressed as volume ratio: 10,000 liters of air per 1 liter of fuel. With this relationship theoretically a complete combustion of gasoline is achieved and greenhouse gas emissions would be minimal. The coefficient is defined as Lambda ...
Maximum value for Fuel–Air equivalence ratio, oxygen sensor voltage, oxygen sensor current, and intake manifold absolute pressure ... Fuel Type From fuel type table ...
By monitoring EGT, the driver or pilot can get an idea of the vehicle's air-fuel ratio (AFR). At a stoichiometric air-fuel ratio, the exhaust gas temperature is different from that in a lean or rich air-fuel ratio. At rich air-fuel ratio, the exhaust gas temperature either increases or decreases depending on the fuel.
where w C, w H, w S, w O refer to the mass fraction of each element in the fuel oil, sulfur burning to SO 2, and AFR mass refers to the air-fuel ratio in mass units. For 1 kg of fuel oil containing 86.1% C, 13.6% H, 0.2% O, and 0.1% S the stoichiometric mass of air is 14.56 kg, so AFR = 14.56. The combustion product mass is then 15.56 kg.
Assume a two-stream problem having one portion of the boundary the fuel stream with fuel mass fraction =, and another portion of the boundary the oxidizer stream with oxidizer mass fraction =,. For example, if the oxidizer stream is air and the fuel stream contains only the fuel, then Y O , O = 0.232 {\displaystyle Y_{O,O}=0.232} and Y F , F ...
In combustion physics, fuel mass fraction is the ratio of fuel mass flow to the total mass flow of a fuel mixture. If an air flow is fuel free, the fuel mass fraction is zero; in pure fuel without trapped gases, the ratio is unity. [1] As fuel is burned in a combustion process, the fuel mass fraction is reduced. The definition reads as = where ...