Search results
Results from the WOW.Com Content Network
6. Calculate the p-value Compare the computed Hosmer–Lemeshow statistic to a chi-squared distribution with Q − 2 degrees of freedom to calculate the p-value. There are Q = 10 groups in the caffeine example, giving 10 – 2 = 8 degrees of freedom. The p-value for a chi-squared statistic of 17.103 with df = 8 is p = 0.029. The p-value is ...
In addition to the mathematical convenience from this, the adding process of log-likelihood has an intuitive interpretation, as often expressed as "support" from the data. When the parameters are estimated using the log-likelihood for the maximum likelihood estimation, each data point is used by being added to the total log-likelihood.
When the price elasticity of demand for a good is perfectly inelastic (E d = 0), changes in the price do not affect the quantity demanded for the good; raising prices will always cause total revenue to increase. Goods necessary to survival can be classified here; a rational person will be willing to pay anything for a good if the alternative is ...
The interpretation of the β j parameter estimates is as the additive effect on the log of the odds for a unit change in the j the explanatory variable. In the case of a dichotomous explanatory variable, for instance, gender e β {\displaystyle e^{\beta }} is the estimate of the odds of having the outcome for, say, males compared with females.
The goal of a forecaster is to maximize the score and for the score to be as large as possible, and −0.22 is indeed larger than −1.6. If one treats the truth or falsity of the prediction as a variable x with value 1 or 0 respectively, and the expressed probability as p , then one can write the logarithmic scoring rule as x ln( p ) + (1 − ...
One way to do that is to explain the distribution of weights by dividing the dog population into groups based on those characteristics. A successful grouping will split dogs such that (a) each group has a low variance of dog weights (meaning the group is relatively homogeneous) and (b) the mean of each group is distinct (if two groups have the ...
Since the probabilities must satisfy p 1 + ⋅⋅⋅ + p k = 1, it is natural to interpret E[X] as a weighted average of the x i values, with weights given by their probabilities p i. In the special case that all possible outcomes are equiprobable (that is, p 1 = ⋅⋅⋅ = p k), the weighted average is given by the standard average. In the ...
To apply AIC in practice, we start with a set of candidate models, and then find the models' corresponding AIC values. There will almost always be information lost due to using a candidate model to represent the "true model," i.e. the process that generated the data.