Search results
Results from the WOW.Com Content Network
The divergence of a vector field which is the resultant of radial inverse-square law fields with respect to one or more sources is proportional to the strength of the local sources, and hence zero outside sources. Newton's law of universal gravitation follows an inverse-square law, as do the effects of electric, light, sound, and radiation ...
The inverse square law behind the Kepler problem is the most important central force law. [1]: 92 The Kepler problem is important in celestial mechanics, since Newtonian gravity obeys an inverse square law. Examples include a satellite moving about a planet, a planet about its sun, or two binary stars about each other.
In addition, Newton had formulated, in Propositions 43–45 of Book 1 [16] and associated sections of Book 3, a sensitive test of the accuracy of the inverse square law, in which he showed that only where the law of force is calculated as the inverse square of the distance will the directions of orientation of the planets' orbital ellipses stay ...
In classical physics, many important forces follow an inverse-square law, such as gravity or electrostatics. The general mathematical form of such inverse-square central forces is F = α r 2 = α u 2 {\displaystyle F={\frac {\alpha }{r^{2}}}=\alpha u^{2}} for a constant α {\displaystyle \alpha } , which is negative for an attractive force and ...
Earnshaw's theorem applies to classical inverse-square law forces (electric and gravitational) and also to the magnetic forces of permanent magnets, if the magnets are hard (the magnets do not vary in strength with external fields).
Later, in 1686, when Newton's Principia had been presented to the Royal Society, Hooke claimed from this correspondence the credit for some of Newton's content in the Principia, and said Newton owed the idea of an inverse-square law of attraction to him – although at the same time, Hooke disclaimed any credit for the curves and trajectories ...
However, if some radial velocity is introduced, these orbits need not be stable (i.e., remain in orbit indefinitely) nor closed (repeatedly returning to exactly the same path). Here we show that a necessary condition for stable, exactly closed non-circular orbits is an inverse-square force or radial harmonic oscillator potential.
The hydrogen atom is a Kepler problem, since it comprises two charged particles interacting by Coulomb's law of electrostatics, another inverse-square central force. The LRL vector was essential in the first quantum mechanical derivation of the spectrum of the hydrogen atom, [ 7 ] [ 8 ] before the development of the Schrödinger equation .