Search results
Results from the WOW.Com Content Network
Allyl alcohol is converted mainly to glycidol, which is a chemical intermediate in the synthesis of glycerol, glycidyl ethers, esters, and amines. Also, a variety of polymerizable esters are prepared from allyl alcohol, e.g. diallyl phthalate. [5] Allyl alcohol has herbicidal activity and can be used as a weed eradicant [9]) and fungicide. [8]
The Sharpless epoxidation is an example of an enantioselective process, in which an achiral allylic alcohol substrate is transformed into an optically active epoxyalcohol. In the case of chiral allylic alcohols, kinetic resolution results. Another example is Sharpless asymmetric dihydroxylation. In the example below the achiral alkene yields ...
Removal of a proton adjacent to the epoxide, elimination, and neutralization of the resulting alkoxide lead to synthetically useful allylic alcohol products. In reactions of chiral , non-racemic epoxides, the configuration of the allylic alcohol product matches that of the epoxide substrate at the carbon whose C–O bond does not break (the ...
For cyclic allylic alcohols, greater selectivity is seen when the alcohol is locked in the pseudo equatorial position rather than the pseudo axial position. [2] However, it was found that for metal catalyzed systems such as those based on vanadium, reaction rates were accelerated when the hydroxyl group was in the axial position by a factor of 34.
Allylic alcohols can be formed from β-hydroxy phenyl sulfoxides that contain a β’-hydrogen through an E i mechanism, tending to give the β,γ-unsaturation. [ 11 ] 1,3-Dienes were found to be formed upon the treatment of an allylic alcohol with an aryl sulfide in the presence of triethylamine . [ 12 ]
If Y is sulfur, the product can be treated with a thiophil to generate an allylic alcohol in what is known as the Mislow–Evans rearrangement. A [2,3]-rearrangement may result in carbon-carbon bond formation. It can also be used as a ring-expansion reaction. [2]
The Sharpless epoxidation is viable with a large range of primary and secondary alkenic alcohols. Furthermore, with the exception noted above, a given dialkyl tartrate will preferentially add to the same face independent of the substitution on the alkene.To demonstrate the synthetic utility of the Sharpless epoxidation, the Sharpless group created synthetic intermediates of various natural ...
An allylic rearrangement or allylic shift is an organic chemical reaction in which reaction at a center vicinal to a double bond causes the double bond to shift to an adjacent pair of atoms: It is encountered in both nucleophilic and electrophilic substitution , although it is usually suppressed relative to non-allylic substitution.