Search results
Results from the WOW.Com Content Network
The state space or phase space is the geometric space in which the axes are the state variables. The system state can be represented as a vector , the state vector . If the dynamical system is linear, time-invariant, and finite-dimensional, then the differential and algebraic equations may be written in matrix form.
In control theory, a distributed-parameter system (as opposed to a lumped-parameter system) is a system whose state space is infinite-dimensional. Such systems are therefore also known as infinite-dimensional systems. Typical examples are systems described by partial differential equations or by delay differential equations.
In applied mathematics, the phase space method is a technique for constructing and analyzing solutions of dynamical systems, that is, solving time-dependent differential equations. The method consists of first rewriting the equations as a system of differential equations that are first-order in time, by introducing additional variables.
The state-transition equation is defined as the solution of the linear homogeneous state equation. The linear time-invariant state equation given by = + + (), with state vector x, control vector u, vector w of additive disturbances, and fixed matrices A, B, E can be solved by using either the classical method of solving linear differential equations or the Laplace transform method.
If the size of the state space is finite, calculating the size of the state space is a combinatorial problem. [4] For example, in the Eight queens puzzle, the state space can be calculated by counting all possible ways to place 8 pieces on an 8x8 chessboard. This is the same as choosing 8 positions without replacement from a set of 64, or
These two equations can be viewed as state space equations and look similar to the state space equations for the Kalman filter. If the functions g and h in the above example are linear, and if both W k {\displaystyle W_{k}} and V k {\displaystyle V_{k}} are Gaussian , the Kalman filter finds the exact Bayesian filtering distribution.
However, since s is an unphysical parameter, physical states must be left invariant by "s-evolution", and so the physical state space is the kernel of H − E (this requires the use of a rigged Hilbert space and a renormalization of the norm). This is related to the quantization of constrained systems and quantization of gauge theories. It is ...
In three-dimensional Euclidean space, these three planes represent solutions to linear equations, and their intersection represents the set of common solutions: in this case, a unique point. The blue line is the common solution to two of these equations. Linear algebra is the branch of mathematics concerning linear equations such as: