enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Phase (waves) - Wikipedia

    en.wikipedia.org/wiki/Phase_(waves)

    Conversely, a phase reversal or phase inversion implies a 180-degree phase shift. [2] When the phase difference () is a quarter of turn (a right angle, +90° = π/2 or −90° = 270° = −π/2 = 3π/2), sinusoidal signals are sometimes said to be in quadrature, e.g., in-phase and quadrature components of a composite signal or even different ...

  3. Optical path length - Wikipedia

    en.wikipedia.org/wiki/Optical_path_length

    The optical path difference between the paths taken by two identical waves can then be used to find the phase change. Finally, using the phase change, the interference between the two waves can be calculated. Fermat's principle states that the path light takes between two points is the path that has the minimum optical path length.

  4. List of equations in wave theory - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in_wave...

    A common misconception occurs between phase velocity and group velocity (analogous to centres of mass and gravity). They happen to be equal in non-dispersive media. In dispersive media the phase velocity is not necessarily the same as the group velocity. The phase velocity varies with frequency.

  5. In-phase and quadrature components - Wikipedia

    en.wikipedia.org/wiki/In-phase_and_quadrature...

    The input sinusoidal voltage is usually defined to have zero phase, meaning that it is arbitrarily chosen as a convenient time reference. So the phase difference is attributed to the current function, e.g. sin(2 π ft + φ), whose orthogonal components are sin(2 π ft) cos(φ) and sin(2 π ft + π /2) sin(φ), as we have seen.

  6. Propagation constant - Wikipedia

    en.wikipedia.org/wiki/Propagation_constant

    In electromagnetic theory, the phase constant, also called phase change constant, parameter or coefficient is the imaginary component of the propagation constant for a plane wave. It represents the change in phase per unit length along the path traveled by the wave at any instant and is equal to the real part of the angular wavenumber of the wave.

  7. Phase detector - Wikipedia

    en.wikipedia.org/wiki/Phase_detector

    The phase detector needs to compute the phase difference of its two input signals. Let α be the phase of the first input and β be the phase of the second. The actual input signals to the phase detector, however, are not α and β, but rather sinusoids such as sin(α) and cos(β).

  8. Phase velocity - Wikipedia

    en.wikipedia.org/wiki/Phase_velocity

    The phase velocity of a wave is the rate at which the wave propagates in any medium. This is the velocity at which the phase of any one frequency component of the wave travels. For such a component, any given phase of the wave (for example, the crest) will appear to travel at the phase velocity.

  9. Phase-comparison monopulse - Wikipedia

    en.wikipedia.org/wiki/Phase-Comparison_Monopulse

    Phase-comparison monopulse is a technique used in radio frequency (RF) applications such as radar and direction finding to accurately estimate the direction of arrival of a signal from the phase difference of the signal measured on two (or more) separated antennas [1] or more typically from displaced phase centers of an array antenna.