enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Uniform continuity - Wikipedia

    en.wikipedia.org/wiki/Uniform_continuity

    The Heine–Cantor theorem asserts that every continuous function on a compact set is uniformly continuous. In particular, if a function is continuous on a closed bounded interval of the real line, it is uniformly continuous on that interval. The Darboux integrability of continuous functions follows almost immediately from this theorem.

  3. Closed graph theorem - Wikipedia

    en.wikipedia.org/wiki/Closed_graph_theorem

    So, if the open mapping theorem holds for ; i.e., is an open mapping, then is continuous and then is continuous (as the composition of continuous maps). For example, the above argument applies if f {\displaystyle f} is a linear operator between Banach spaces with closed graph, or if f {\displaystyle f} is a map with closed graph between compact ...

  4. Continuous function - Wikipedia

    en.wikipedia.org/wiki/Continuous_function

    the sinc-function becomes a continuous function on all real numbers. The term removable singularity is used in such cases when (re)defining values of a function to coincide with the appropriate limits make a function continuous at specific points. A more involved construction of continuous functions is the function composition.

  5. Probability density function - Wikipedia

    en.wikipedia.org/wiki/Probability_density_function

    In probability theory, a probability density function (PDF), density function, or density of an absolutely continuous random variable, is a function whose value at any given sample (or point) in the sample space (the set of possible values taken by the random variable) can be interpreted as providing a relative likelihood that the value of the ...

  6. Lusin's theorem - Wikipedia

    en.wikipedia.org/wiki/Lusin's_theorem

    In the mathematical field of mathematical analysis, Lusin's theorem (or Luzin's theorem, named for Nikolai Luzin) or Lusin's criterion states that an almost-everywhere finite function is measurable if and only if it is a continuous function on nearly all its domain.

  7. Bisection method - Wikipedia

    en.wikipedia.org/wiki/Bisection_method

    The input for the method is a continuous function f, an interval [a, b], and the function values f(a) and f(b). The function values are of opposite sign (there is at least one zero crossing within the interval). Each iteration performs these steps: Calculate c, the midpoint of the interval, c = ⁠ a + b / 2 ⁠.

  8. Runge's phenomenon - Wikipedia

    en.wikipedia.org/wiki/Runge's_phenomenon

    The Weierstrass approximation theorem states that for every continuous function f(x) defined on an interval [a,b], there exists a set of polynomial functions P n (x) for n=0, 1, 2, ..., each of degree at most n, that approximates f(x) with uniform convergence over [a,b] as n tends to infinity, that is,

  9. Maximum and minimum - Wikipedia

    en.wikipedia.org/wiki/Maximum_and_minimum

    For example, if a bounded differentiable function f defined on a closed interval in the real line has a single critical point, which is a local minimum, then it is also a global minimum (use the intermediate value theorem and Rolle's theorem to prove this by contradiction). In two and more dimensions, this argument fails.