Search results
Results from the WOW.Com Content Network
A fixed-point representation of a fractional number is essentially an integer that is to be implicitly multiplied by a fixed scaling factor. For example, the value 1.23 can be stored in a variable as the integer value 1230 with implicit scaling factor of 1/1000 (meaning that the last 3 decimal digits are implicitly assumed to be a decimal fraction), and the value 1 230 000 can be represented ...
A floating-point number consists of two fixed-point components, whose range depends exclusively on the number of bits or digits in their representation. Whereas components linearly depend on their range, the floating-point range linearly depends on the significand range and exponentially on the range of exponent component, which attaches ...
A floating-point variable can represent a wider range of numbers than a fixed-point variable of the same bit width at the cost of precision. A signed 32-bit integer variable has a maximum value of 2 31 − 1 = 2,147,483,647, whereas an IEEE 754 32-bit base-2 floating-point variable has a maximum value of (2 − 2 −23) × 2 127 ≈ 3.4028235 ...
The Q notation is a way to specify the parameters of a binary fixed point number format. For example, in Q notation, the number format denoted by Q8.8 means that the fixed point numbers in this format have 8 bits for the integer part and 8 bits for the fraction part. A number of other notations have been used for the same purpose.
Computer arithmetic is the scientific field that deals with representation of numbers on computers and corresponding implementations of the arithmetic operations. [1] [2] It includes: Fixed-point arithmetic; Floating-point arithmetic; Interval arithmetic; Arbitrary-precision arithmetic; Modular arithmetic. Multi-modular arithmetic
To approximate the greater range and precision of real numbers, we have to abandon signed integers and fixed-point numbers and go to a "floating-point" format. In the decimal system, we are familiar with floating-point numbers of the form (scientific notation): 1.1030402 × 10 5 = 1.1030402 × 100000 = 110304.02. or, more compactly: 1.1030402E5
The advantage of decimal floating-point representation over decimal fixed-point and integer representation is that it supports a much wider range of values. For example, while a fixed-point representation that allocates 8 decimal digits and 2 decimal places can represent the numbers 123456.78, 8765.43, 123.00, and so on, a floating-point ...
A fixed-point theorem is a result saying that at least one fixed point exists, under some general condition. [1] For example, the Banach fixed-point theorem (1922) gives a general criterion guaranteeing that, if it is satisfied, fixed-point iteration will always converge to a fixed point.