Search results
Results from the WOW.Com Content Network
The origin of true muscle cells is argued by other authors to be the endoderm portion of the mesoderm and the endoderm. However, Schmid & Seipel (2005) [30] counter skepticism – about whether the muscle cells found in ctenophores and cnidarians are "true" muscle cells – by considering that cnidarians develop through a medusa stage and polyp ...
A single satellite cell can proliferate and become a larger amount of muscle cells. [28] With the understanding that myosatellite cells are the progenitor of most skeletal muscle cells, it was theorized that if these cells could be grown in a lab and placed on scaffolds to make fibers, the muscle cells could then be used for food production. [29]
The origin of a muscle is the bone, typically proximal, which has greater mass and is more stable during a contraction than a muscle's insertion. [14] For example, with the latissimus dorsi muscle, the origin site is the torso, and the insertion is the arm. When this muscle contracts, normally the arm moves due to having less mass than the torso.
A myofibril (also known as a muscle fibril or sarcostyle) [1] is a basic rod-like organelle of a muscle cell. [2] Skeletal muscles are composed of long, tubular cells known as muscle fibers, and these cells contain many chains of myofibrils. [3] Each myofibril has a diameter of 1–2 micrometres. [3]
T-tubules (transverse tubules) are extensions of the cell membrane that penetrate into the center of skeletal and cardiac muscle cells.With membranes that contain large concentrations of ion channels, transporters, and pumps, T-tubules permit rapid transmission of the action potential into the cell, and also play an important role in regulating cellular calcium concentration.
Muscle tissue varies with function and location in the body. In vertebrates, the three types are: skeletal, cardiac (both striated), and; smooth muscle (non-striated). [2] Skeletal muscle tissue consists of elongated, multinucleate muscle cells called muscle fibers, and is responsible for movements of the body
At each end of the muscle fibre, the surface layer of the sarcolemma fuses with a tendon fibre, and the tendon fibres, in turn, collect into bundles to form the muscle tendons that adhere to bones. The sarcolemma generally maintains the same function in muscle cells as the plasma membrane does in other eukaryote cells. [4]
Cardiac and skeletal muscle cells contain structures called transverse tubules (T-tubules), which are extensions of the cell membrane that travel into the centre of the cell. T-tubules are closely associated with a specific region of the SR, known as the terminal cisternae in skeletal muscle, with a distance of roughly 12 nanometers, separating ...