Search results
Results from the WOW.Com Content Network
During heating, the point at which melting is observed and the temperature constant is the melting point of the sample. [1] A more modern method uses dedicated equipment, known as a melting point apparatus. A slow heating rate at the melting point is needed in order to get an accurate measurement.
The melting point (or, rarely, liquefaction point) of a substance is the temperature at which it changes state from solid to liquid. At the melting point the solid and liquid phase exist in equilibrium. The melting point of a substance depends on pressure and is usually specified at a standard pressure such as 1 atmosphere or 100 kPa.
This melting-point apparatus for use with a microscope was developed by the Austrian pharmacognosist Ludwig Kofler (30 November 1891 Dornbirn - 23 August 1951 Innsbruck) and his wife mineralogist Adelheid Kofler. In 1936, the Koflers and Mayrhofer published their "Mikroskopische Methoden in der Mikrochemie" [Kofler, L., A.
While the outward designs of apparatuses can vary greatly, most apparatuses use a sample loaded into a sealed capillary tube (melting-point tube), which is then placed in the apparatus. The sample is then heated, either by a heating block or an oil bath, and as the temperature increases, the sample is observed to determine when the phase change ...
Principle of a group-contribution method. The Joback method is a group-contribution method.These kinds of methods use basic structural information of a chemical molecule, like a list of simple functional groups, add parameters to these functional groups, and calculate thermophysical and transport properties as a function of the sum of group parameters.
Calibration, loading, deep freezing, and determination are the four separate procedures involved in determining the freezing and melting points. The concentration of the solution can be determined by knowing the number of particles present in it, which can be done by determining the freezing point of the solution.
The apparatus is heated. Dissolved gases evolve from the sample first, and the air in the capillary tube expands. Once the sample starts to boil, heating is stopped, and the temperature starts to fall. The temperature at which the liquid sample is sucked into the sealed capillary is the boiling point of the sample. [1] [2] [3] [4]
From a thermodynamics point of view, at the melting point the change in Gibbs free energy ∆G of the substances is zero, but there are non-zero changes in the enthalpy (H) and the entropy (S), known respectively as the enthalpy of fusion (or latent heat of fusion) and the entropy of fusion.