Search results
Results from the WOW.Com Content Network
White matter is the tissue through which messages pass between different areas of grey matter within the central nervous system. The white matter is white because of the fatty substance (myelin) that surrounds the nerve fibers (axons). This myelin is found in almost all long nerve fibers, and acts as an electrical insulation.
dMRI is a recent breakthrough in brain mapping allowing the visualization of cross connections between different anatomical parts of the brain. It allows noninvasive imaging of white matter fiber structure and in addition to mapping can be useful in clinical observations of abnormalities, including damage from stroke.
Being rich in lipid, myelin appears white, hence the name given to the "white matter" of the CNS. Both CNS white matter tracts (e.g. the optic nerve, corticospinal tract and corpus callosum) and PNS nerves (e.g. the sciatic nerve and the auditory nerve, which also appear white) each comprise thousands to millions of axons, largely aligned in ...
The atlas is based on magnetic resonance imaging (MRI). It traces the growth, white matter, connectivity, and development of the C57BL/6 mouse brain from embryonic day 12 to postnatal day 80. [5] This atlas enhances the ability of neuroscientists to study how pollutants and genetic mutations effect the development of
There are four subdivisions of group A nerve fibers: alpha (α) Aα; beta (β) Aβ; , gamma (γ) Aγ, and delta (δ) Aδ. These subdivisions have different amounts of myelination and axon thickness and therefore transmit signals at different speeds. Larger diameter axons and more myelin insulation lead to faster signal propagation.
All neuroimaging is considered part of brain mapping. Brain mapping can be conceived as a higher form of neuroimaging, producing brain images supplemented by the result of additional (imaging or non-imaging) data processing or analysis, such as maps projecting (measures of) behavior onto brain regions (see fMRI).
Diffusion tensor imaging is being developed for studying the diseases of the white matter of the brain as well as for studies of other body tissues (see below). DWI is most applicable when the tissue of interest is dominated by isotropic water movement e.g. grey matter in the cerebral cortex and major brain nuclei, or in the body—where the ...
Myelin is formed by oligodendrocytes in the central nervous system and Schwann cells in the peripheral nervous system.Therefore, the first stage of myelinogenesis is often defined as the differentiation of oligodendrocyte progenitor cells (OPCs) or Schwann cell progenitors into their mature counterparts, [4] followed by myelin formation around axons.