Search results
Results from the WOW.Com Content Network
In mathematics, reflection symmetry, line symmetry, mirror symmetry, or mirror-image symmetry is symmetry with respect to a reflection. That is, a figure which does not change upon undergoing a reflection has reflectional symmetry. In 2-dimensional space, there is a line/axis of symmetry, in 3-dimensional space, there is a plane of symmetry
A drawing of a butterfly with bilateral symmetry, with left and right sides as mirror images of each other.. In geometry, an object has symmetry if there is an operation or transformation (such as translation, scaling, rotation or reflection) that maps the figure/object onto itself (i.e., the object has an invariance under the transform). [1]
When some geometrical object or configuration appears unchanged by a transformation, it is said to have symmetry, and the transformation is called a symmetry operation. Glide-reflection symmetry is seen in frieze groups (patterns which repeat in one dimension, often used in decorative borders), wallpaper groups (regular tessellations of the ...
Symmetry is one class of patterns in nature whereby there is near-repetition of the pattern element, either by reflection or rotation. While sponges and placozoans represent two groups of animals which do not show any symmetry (i.e. are asymmetrical), the body plans of most multicellular organisms exhibit, and are defined by, some form of symmetry.
C nh, [n +,2], (n*) of order 2n - prismatic symmetry or ortho-n-gonal group (abstract group Z n × Dih 1); for n=1 this is denoted by C s (1*) and called reflection symmetry, also bilateral symmetry. It has reflection symmetry with respect to a plane perpendicular to the n-fold rotation axis. C nv, [n], (*nn) of order 2n - pyramidal symmetry or ...
The type of symmetry is determined by the way the pieces are organized, or by the type of transformation: An object has reflectional symmetry (line or mirror symmetry) if there is a line (or in 3D a plane) going through it which divides it into two pieces that are mirror images of each other. [6]
Point Q is the reflection of point P through the line AB. In a plane (or, respectively, 3-dimensional) geometry, to find the reflection of a point drop a perpendicular from the point to the line (plane) used for reflection, and extend it the same distance on the other side. To find the reflection of a figure, reflect each point in the figure.
The symmetry group of a square belongs to the family of dihedral groups, D n (abstract group type Dih n), including as many reflections as rotations. The infinite rotational symmetry of the circle implies reflection symmetry as well, but formally the circle group S 1 is distinct from Dih(S 1) because the latter explicitly includes the reflections.