enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gravity - Wikipedia

    en.wikipedia.org/wiki/Gravity

    In physics, gravity (from Latin gravitas 'weight' [1]) is a fundamental interaction primarily observed as mutual attraction between all things that have mass.Gravity is, by far, the weakest of the four fundamental interactions, approximately 10 38 times weaker than the strong interaction, 10 36 times weaker than the electromagnetic force and 10 29 times weaker than the weak interaction.

  3. Newton's law of universal gravitation - Wikipedia

    en.wikipedia.org/wiki/Newton's_law_of_universal...

    The force is proportional to the product of the two masses and inversely proportional to the square of the distance between them: [11] Diagram of two masses attracting one another = where F is the force between the masses; G is the Newtonian constant of gravitation (6.674 × 10 −11 m 3 ⋅kg −1 ⋅s −2);

  4. Introduction to general relativity - Wikipedia

    en.wikipedia.org/wiki/Introduction_to_general...

    On the other hand, there are many interesting open questions, and in particular, the theory as a whole is almost certainly incomplete. [ 43 ] In contrast to all other modern theories of fundamental interactions , general relativity is a classical theory: it does not include the effects of quantum physics .

  5. List of equations in gravitation - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    A common misconception occurs between centre of mass and centre of gravity.They are defined in similar ways but are not exactly the same quantity. Centre of mass is the mathematical description of placing all the mass in the region considered to one position, centre of gravity is a real physical quantity, the point of a body where the gravitational force acts.

  6. General relativity - Wikipedia

    en.wikipedia.org/wiki/General_relativity

    General relativity has emerged as a highly successful model of gravitation and cosmology, which has so far passed many unambiguous observational and experimental tests. However, there are strong indications that the theory is incomplete. [210] The problem of quantum gravity and the question of the reality of spacetime singularities remain open ...

  7. Gravitational constant - Wikipedia

    en.wikipedia.org/wiki/Gravitational_constant

    Arthur Stanley Mackenzie in The Laws of Gravitation (1899) reviews the work done in the 19th century. [28] Poynting is the author of the article "Gravitation" in the Encyclopædia Britannica Eleventh Edition (1911). Here, he cites a value of G = 6.66 × 10 −11 m 3 ⋅kg −1 ⋅s −2 with a relative uncertainty of 0.2%.

  8. Shell theorem - Wikipedia

    en.wikipedia.org/wiki/Shell_theorem

    Applying Newton's Universal Law of Gravitation, the sum of the forces due to the mass elements in the shaded band is d F = G m s 2 d M . {\displaystyle dF={\frac {Gm}{s^{2}}}dM.} However, since there is partial cancellation due to the vector nature of the force in conjunction with the circular band's symmetry, the leftover component (in the ...

  9. Penrose–Hawking singularity theorems - Wikipedia

    en.wikipedia.org/wiki/Penrose–Hawking...

    It is still an open question whether (classical) general relativity predicts spacelike singularities in the interior of realistic charged or rotating black holes, or whether these are artefacts of high-symmetry solutions and turn into null or timelike singularities when perturbations are added.