enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Test statistic - Wikipedia

    en.wikipedia.org/wiki/Test_statistic

    Test statistic is a quantity derived from the sample for statistical hypothesis testing. [1] A hypothesis test is typically specified in terms of a test statistic, considered as a numerical summary of a data-set that reduces the data to one value that can be used to perform the hypothesis test.

  3. Wilks' theorem - Wikipedia

    en.wikipedia.org/wiki/Wilks'_theorem

    Statistical tests (such as hypothesis testing) generally require knowledge of the probability distribution of the test statistic. This is often a problem for likelihood ratios , where the probability distribution can be very difficult to determine.

  4. Statistical hypothesis test - Wikipedia

    en.wikipedia.org/wiki/Statistical_hypothesis_test

    An example of Neyman–Pearson hypothesis testing (or null hypothesis statistical significance testing) can be made by a change to the radioactive suitcase example. If the "suitcase" is actually a shielded container for the transportation of radioactive material, then a test might be used to select among three hypotheses: no radioactive source ...

  5. List of statistical tests - Wikipedia

    en.wikipedia.org/wiki/List_of_statistical_tests

    Statistical tests are used to test the fit between a hypothesis and the data. [1] [2] Choosing the right statistical test is not a trivial task. [1]The choice of the test depends on many properties of the research question.

  6. Likelihood-ratio test - Wikipedia

    en.wikipedia.org/wiki/Likelihood-ratio_test

    The likelihood-ratio test, also known as Wilks test, [2] is the oldest of the three classical approaches to hypothesis testing, together with the Lagrange multiplier test and the Wald test. [3] In fact, the latter two can be conceptualized as approximations to the likelihood-ratio test, and are asymptotically equivalent.

  7. Type III error - Wikipedia

    en.wikipedia.org/wiki/Type_III_error

    In statistical hypothesis testing, there are various notions of so-called type III errors (or errors of the third kind), and sometimes type IV errors or higher, by analogy with the type I and type II errors of Jerzy Neyman and Egon Pearson. Fundamentally, type III errors occur when researchers provide the right answer to the wrong question, i.e ...

  8. Student's t-test - Wikipedia

    en.wikipedia.org/wiki/Student's_t-test

    Most test statistics have the form t = Z/s, where Z and s are functions of the data. Z may be sensitive to the alternative hypothesis (i.e., its magnitude tends to be larger when the alternative hypothesis is true), whereas s is a scaling parameter that allows the distribution of t to be determined. As an example, in the one-sample t-test

  9. Hopkins statistic - Wikipedia

    en.wikipedia.org/wiki/Hopkins_statistic

    It acts as a statistical hypothesis test where the null hypothesis is that the data is generated by a Poisson point process and are thus uniformly randomly distributed. [2] If individuals are aggregated, then its value approaches 0, and if they are randomly distributed along the value tends to 0.5.