Search results
Results from the WOW.Com Content Network
From the viewpoint of physics (dynamics, to be exact), a firearm, as for most weapons, is a system for delivering maximum destructive energy to the target with minimum delivery of energy on the shooter. [citation needed] The momentum delivered to the target, however, cannot be any more than that (due to recoil) on the shooter.
A gun is a normally tubular weapon or other device designed to discharge projectiles or other material. [20] The projectile may be solid, liquid, gas, or energy and may be free, as with bullets and artillery shells, or captive as with Taser probes and whaling harpoons .
The same physics principles affecting recoil in mounted guns also applies to hand-held guns. However, the shooter's body assumes the role of gun mount, and must similarly dissipate the gun's recoiling momentum over a longer period of time than the bullet travel-time in the barrel, in order not to injure the shooter.
Free recoil / Frecoil is a vernacular term or jargon for recoil energy of a firearm not supported from behind. Free recoil denotes the translational kinetic energy (E t) imparted to the shooter of a small arm when discharged and is expressed in joules (J), or foot-pound force (ft·lb f) for non-SI units of measure.
A firearm, in many ways, is like a piston engine on the power stroke. There is a certain amount of high-pressure gas available, and energy is extracted from it by making the gas move a piston — in this case, the projectile is the piston.
The gun operated in two stages. First, burning gunpowder was used to drive a piston to pressurize hydrogen to 10,000 atm (1.0 GPa). The pressurized gas was then released to a secondary piston, which traveled forward into a shock-absorbing "pillow", transferring the energy from the piston to the projectile on the other side of the pillow.
The physics affecting the bullet once it leaves the barrel is termed external ballistics. The primary factors affecting the aerodynamics of a bullet in flight are the bullet's shape and the rotation imparted by the rifling of the gun barrel. Rotational forces stabilize the bullet gyroscopically as well as aerodynamically.
Pellet exiting muzzle, with formula for energy overlaid.. Muzzle energy is the kinetic energy of a bullet as it is expelled from the muzzle of a firearm. Without consideration of factors such as aerodynamics and gravity for the sake of comparison, muzzle energy is used as a rough indication of the destructive potential of a given firearm or cartridge.