Search results
Results from the WOW.Com Content Network
The distribution of a random variable X with distribution function F is said to have a long right tail [1] if for all t > 0, [> + >] =,or equivalently ¯ (+) ¯ (). This has the intuitive interpretation for a right-tailed long-tailed distributed quantity that if the long-tailed quantity exceeds some high level, the probability approaches 1 that it will exceed any other higher level.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
The uniform distribution or rectangular distribution on [a,b], where all points in a finite interval are equally likely, is a special case of the four-parameter Beta distribution. The Irwin–Hall distribution is the distribution of the sum of n independent random variables, each of which having the uniform distribution on [0,1].
The most extreme case of a fat tail is given by a distribution whose tail decays like a power law. A variety of Cauchy distributions for various location and scale parameters. Cauchy distributions are examples of fat-tailed distributions. That is, if the complementary cumulative distribution of a random variable X can be expressed as [citation ...
The long-tail distribution applies at a given point in time, but over time the relative popularity of the sales of the individual products will change. [26] Although the distribution of sales may appear to be similar over time, the positions of the individual items within it will vary. For example, new items constantly enter most fashion markets.
This distribution is a common alternative to the asymptotic power-law distribution because it naturally captures finite-size effects. The Tweedie distributions are a family of statistical models characterized by closure under additive and reproductive convolution as well as under scale transformation. Consequently, these models all express a ...
A discrete probability distribution is applicable to the scenarios where the set of possible outcomes is discrete (e.g. a coin toss, a roll of a die) and the probabilities are encoded by a discrete list of the probabilities of the outcomes; in this case the discrete probability distribution is known as probability mass function.
Cumulative distribution function for the exponential distribution Cumulative distribution function for the normal distribution. In probability theory and statistics, the cumulative distribution function (CDF) of a real-valued random variable, or just distribution function of , evaluated at , is the probability that will take a value less than or equal to .