Search results
Results from the WOW.Com Content Network
In mathematics, an expansion of a product of sums expresses it as a sum of products by using the fact that multiplication distributes over addition. Expansion of a polynomial expression can be obtained by repeatedly replacing subexpressions that multiply two other subexpressions, at least one of which is an addition, by the equivalent sum of products, continuing until the expression becomes a ...
Also, some fractions (such as 1 ⁄ 7, which is 0.14285714285714; to 14 significant figures) can be difficult to recognize in decimal form; as a result, many scientific calculators are able to work in vulgar fractions or mixed numbers.
Factorization is one of the most important methods for expression manipulation for several reasons. If one can put an equation in a factored form E⋅F = 0, then the problem of solving the equation splits into two independent (and generally easier) problems E = 0 and F = 0. When an expression can be factored, the factors are often much simpler ...
Using the preceding decomposition inductively one gets fractions of the form , with < = , where G is an irreducible polynomial. If k > 1 , one can decompose further, by using that an irreducible polynomial is a square-free polynomial , that is, 1 {\displaystyle 1} is a greatest common divisor of the polynomial and its derivative .
A continued fraction in canonical form is an expression of the form ... expanded: = + + + . ... (An online Combined Continued Fraction Calculator is ...
A simple fraction (also known as a common fraction or vulgar fraction, where vulgar is Latin for "common") is a rational number written as a/b or , where a and b are both integers. [9] As with other fractions, the denominator (b) cannot be zero. Examples include 1 / 2 , − 8 / 5 , −8 / 5 , and 8 / −5
However, this relaxed form of Egyptian fractions does not allow for any number to be represented using fewer fractions, as any expansion with repeated fractions can be converted to an Egyptian fraction of equal or smaller length by repeated application of the replacement + = + + (+) if k is odd, or simply by replacing 1 / k + 1 / k ...
By considering the complete quotients of periodic continued fractions, Euler was able to prove that if x is a regular periodic continued fraction, then x is a quadratic irrational number. The proof is straightforward. From the fraction itself, one can construct the quadratic equation with integral coefficients that x must satisfy.