Ad
related to: pipe roughness coefficient chart for gas
Search results
Results from the WOW.Com Content Network
where is the density of the fluid, is the average velocity in the pipe, is the friction factor from the Moody chart, is the length of the pipe and is the pipe diameter. The chart plots Darcy–Weisbach friction factor against Reynolds number Re for a variety of relative roughnesses, the ratio of the mean height of roughness of the pipe to the ...
The Reynolds number Re is taken to be Re = V D / ν, where V is the mean velocity of fluid flow, D is the pipe diameter, and where ν is the kinematic viscosity μ / ρ, with μ the fluid's Dynamic viscosity, and ρ the fluid's density. The pipe's relative roughness ε / D, where ε is the pipe's effective roughness height and D the pipe ...
The proportionality coefficient is the dimensionless "Darcy friction factor" or "flow coefficient". This dimensionless coefficient will be a combination of geometric factors such as π, the Reynolds number and (outside the laminar regime) the relative roughness of the pipe (the ratio of the roughness height to the hydraulic diameter).
From the chart, it is evident that the friction factor is never zero, even for smooth pipes because of some roughness at the microscopic level. The friction factor for laminar flow of Newtonian fluids in round tubes is often taken to be: [4] = [5] [2] where Re is the Reynolds number of the flow.
Note that the value of this dimensionless factor depends on the pipe diameter D and the roughness of the pipe surface ε. Furthermore, it varies as well with the flow velocity V and on the physical properties of the fluid (usually cast together into the Reynolds number Re). Thus, the friction loss is not precisely proportional to the flow ...
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
C is a roughness coefficient; R is the hydraulic radius (in ft for US customary units, in m for SI units) S is the slope of the energy line (head loss per length of pipe or h f /L) The equation is similar to the Chézy formula but the exponents have been adjusted to better fit data from typical engineering situations.
The Hardy Cross method assumes that the flow going in and out of the system is known and that the pipe length, diameter, roughness and other key characteristics are also known or can be assumed. [1] The method also assumes that the relation between flow rate and head loss is known, but the method does not require any particular relation to be used.
Ad
related to: pipe roughness coefficient chart for gas