Search results
Results from the WOW.Com Content Network
The sum of the squared distances from the vertices of a regular n-gon to any point on its circumcircle equals 2nR 2 where R is the circumradius. [4]: p.73 The sum of the squared distances from the midpoints of the sides of a regular n-gon to any point on the circumcircle is 2nR 2 − 1 / 4 ns 2, where s is the side length and R is the ...
Let one n-gon be inscribed in a circle, and let another n-gon be tangential to that circle at the vertices of the first n-gon. Then from any point P on the circle, the product of the perpendicular distances from P to the sides of the first n-gon equals the product of the perpendicular distances from P to the sides of the second n-gon. [13]
In trigonometry, the gradian – also known as the gon (from Ancient Greek γωνία (gōnía) 'angle'), grad, or grade [1] – is a unit of measurement of an angle, defined as one-hundredth of the right angle; in other words, 100 gradians is equal to 90 degrees.
An n-gon is a polygon with n sides; for example, a triangle is a 3-gon. ... The area of a regular n-gon inscribed in a unit-radius circle, ...
If n = pq with p = 2 or p and q coprime, an n-gon can be constructed from a p-gon and a q-gon. If p = 2, draw a q-gon and bisect one of its central angles. From this, a 2q-gon can be constructed. If p > 2, inscribe a p-gon and a q-gon in the same circle in such a way that they share a
Individual polygons are named (and sometimes classified) according to the number of sides, combining a Greek-derived numerical prefix with the suffix -gon, e.g. pentagon, dodecagon. The triangle, quadrilateral and nonagon are exceptions, although the regular forms trigon, tetragon, and enneagon are sometimes encountered as well.
Given a circle, let u n be the perimeter of an inscribed regular n-gon, and let U n be the perimeter of a circumscribed regular n-gon. Then u n and U n are lower and upper bounds for the circumference of the circle that become sharper and sharper as n increases, and their average (u n + U n)/2 is an especially good approximation to the ...
An equilateral triangle A bicentric kite A bicentric isosceles trapezoid A regular pentagon. In geometry, a bicentric polygon is a tangential polygon (a polygon all of whose sides are tangent to an inner incircle) which is also cyclic — that is, inscribed in an outer circle that passes through each vertex of the polygon.