enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Continuous knapsack problem - Wikipedia

    en.wikipedia.org/wiki/Continuous_knapsack_problem

    In theoretical computer science, the continuous knapsack problem (also known as the fractional knapsack problem) is an algorithmic problem in combinatorial optimization in which the goal is to fill a container (the "knapsack") with fractional amounts of different materials chosen to maximize the value of the selected materials.

  3. Knapsack problem - Wikipedia

    en.wikipedia.org/wiki/Knapsack_problem

    The most common problem being solved is the 0-1 knapsack problem, which restricts the number of copies of each kind of item to zero or one. Given a set of n {\displaystyle n} items numbered from 1 up to n {\displaystyle n} , each with a weight w i {\displaystyle w_{i}} and a value v i {\displaystyle v_{i}} , along with a maximum weight capacity ...

  4. List of knapsack problems - Wikipedia

    en.wikipedia.org/wiki/List_of_knapsack_problems

    The knapsack problem is one of the most studied problems in combinatorial optimization, with many real-life applications. For this reason, many special cases and generalizations have been examined. For this reason, many special cases and generalizations have been examined.

  5. Bin packing problem - Wikipedia

    en.wikipedia.org/wiki/Bin_packing_problem

    The problem of fractional knapsack with penalties was introduced by Malaguti, Monaci, Paronuzzi and Pferschy. [44] They developed an FPTAS and a dynamic program for the problem, and they showed an extensive computational study comparing the performance of their models.

  6. Karmarkar–Karp bin packing algorithms - Wikipedia

    en.wikipedia.org/wiki/Karmarkar–Karp_bin...

    The Karmarkar–Karp (KK) bin packing algorithms are several related approximation algorithm for the bin packing problem. [1] The bin packing problem is a problem of packing items of different sizes into bins of identical capacity, such that the total number of bins is as small as possible. Finding the optimal solution is computationally hard.

  7. Packing problems - Wikipedia

    en.wikipedia.org/wiki/Packing_problems

    Each packing problem has a dual covering problem, which asks how many of the same objects are required to completely cover every region of the container, where objects are allowed to overlap. In a bin packing problem, people are given: A container, usually a two- or three-dimensional convex region, possibly of infinite size. Multiple containers ...

  8. List of NP-complete problems - Wikipedia

    en.wikipedia.org/wiki/List_of_NP-complete_problems

    The problem for graphs is NP-complete if the edge lengths are assumed integers. The problem for points on the plane is NP-complete with the discretized Euclidean metric and rectilinear metric. The problem is known to be NP-hard with the (non-discretized) Euclidean metric. [3]: ND22, ND23

  9. Cutting stock problem - Wikipedia

    en.wikipedia.org/wiki/Cutting_stock_problem

    For the one-dimensional case, the new patterns are introduced by solving an auxiliary optimization problem called the knapsack problem, using dual variable information from the linear program. The knapsack problem has well-known methods to solve it, such as branch and bound and dynamic programming. The Delayed Column Generation method can be ...