enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lorenz system - Wikipedia

    en.wikipedia.org/wiki/Lorenz_system

    In particular, the Lorenz attractor is a set of chaotic solutions of the Lorenz system. The term " butterfly effect " in popular media may stem from the real-world implications of the Lorenz attractor, namely that tiny changes in initial conditions evolve to completely different trajectories .

  3. Portal:Mathematics/Selected picture/3 - Wikipedia

    en.wikipedia.org/wiki/Portal:Mathematics/...

    The Lorenz attractor is an iconic example of a strange attractor in chaos theory.This three-dimensional fractal structure, resembling a butterfly or figure eight, reflects the long-term behavior of solutions to the Lorenz system, a set of three differential equations used by mathematician and meteorologist Edward N. Lorenz as a simple description of fluid circulation in a shallow layer (of ...

  4. Portal:Systems science/Picture - Wikipedia

    en.wikipedia.org/wiki/Portal:Systems_science/Picture

    The Lorenz attractor is a 3-dimensional structure corresponding to the long-term behavior of a chaotic flow, noted for its butterfly shape. The map shows how the state of a dynamical system (the three variables of a three-dimensional system) evolves over time in a complex, non-repeating pattern.

  5. Butterfly effect - Wikipedia

    en.wikipedia.org/wiki/Butterfly_effect

    A plot of Lorenz' strange attractor for values ρ=28, σ = 10, β = 8/3. The butterfly effect or sensitive dependence on initial conditions is the property of a dynamical system that, starting from any of various arbitrarily close alternative initial conditions on the attractor, the iterated points will become arbitrarily spread out from each other.

  6. Logistic map - Wikipedia

    en.wikipedia.org/wiki/Logistic_map

    The attractive fixed points and periodic points mentioned above are also members of the attractor family. The structure of the Feigenbaum attractor is the same as that of a fractal figure called the Cantor set . The number of points that compose the Feigenbaum attractor is infinite and their cardinality is equal to the real numbers.

  7. List of chaotic maps - Wikipedia

    en.wikipedia.org/wiki/List_of_chaotic_maps

    Burke-Shaw chaotic attractor [8] continuous: real: 3: 2: Chen chaotic attractor [9] continuous: real: 3: 3: Not topologically conjugate to the Lorenz attractor. Chen-Celikovsky system [10] continuous: real: 3 "Generalized Lorenz canonical form of chaotic systems" Chen-LU system [11] continuous: real: 3: 3: Interpolates between Lorenz-like and ...

  8. Dynamical system - Wikipedia

    en.wikipedia.org/wiki/Dynamical_system

    The Lorenz attractor arises in the study of the Lorenz oscillator, a dynamical system.. In mathematics, a dynamical system is a system in which a function describes the time dependence of a point in an ambient space, such as in a parametric curve.

  9. Portal:Mathematics/Featured picture/2006 02 - Wikipedia

    en.wikipedia.org/wiki/Portal:Mathematics/...

    The Lorenz attractor is a non-linear dynamical system derived from the simplified equations of convection rolls in certain atmospheric equations. For a certain set of parameters the system exhibits chaotic behavior and forms what is called a strange attractor .