enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tensor tympani muscle - Wikipedia

    en.wikipedia.org/wiki/Tensor_tympani_muscle

    In many people with hyperacusis, an increased activity develops in the tensor tympani muscle in the middle ear as part of the startle response to some sounds. This lowered reflex threshold for tensor tympani contraction is activated by the perception/anticipation of loud sound, and is called tonic tensor tympani syndrome (TTTS). In some people ...

  3. Acoustic reflex - Wikipedia

    en.wikipedia.org/wiki/Acoustic_reflex

    The acoustic reflex (also known as the stapedius reflex, [1] stapedial reflex, [2] auditory reflex, [3] middle-ear-muscle reflex (MEM reflex, MEMR), [4] attenuation reflex, [5] cochleostapedial reflex [6] or intra-aural reflex [6]) is an involuntary muscle contraction that occurs in the middle ear in response to loud sound stimuli or when the person starts to vocalize.

  4. Infrasound - Wikipedia

    en.wikipedia.org/wiki/Infrasound

    Although the ear is the primary organ for sensing low sound, at higher intensities it is possible to feel infrasound vibrations in various parts of the body. The study of such sound waves is sometimes referred to as infrasonics , covering sounds beneath 20 Hz down to 0.1 Hz (and rarely to 0.001 Hz).

  5. Temporal envelope and fine structure - Wikipedia

    en.wikipedia.org/wiki/Temporal_envelope_and_fine...

    Although pitch retrieval mechanisms in the auditory system are still a matter of debate, [76] [115] TFS n information may be used to retrieve the pitch of low-frequency pure tones [75] and estimate the individual frequencies of the low-numbered (ca. 1st-8th) harmonics of a complex sound, [116] frequencies from which the fundamental frequency of ...

  6. Superior canal dehiscence syndrome - Wikipedia

    en.wikipedia.org/wiki/Superior_canal_dehiscence...

    Low-frequency conductive hearing loss is present in many patients with SCDS and is explained by the dehiscence acting as a "third window." Vibrations entering the ear canal and middle ear are then abnormally diverted through the superior semicircular canal and up into the intracranial space where they become absorbed instead of being registered ...

  7. Inner ear - Wikipedia

    en.wikipedia.org/wiki/Inner_ear

    The human ear has evolved with two basic tools to encode sound waves; each is separate in detecting high and low-frequency sounds. Georg von Békésy (1899–1972) employed the use of a microscope in order to examine the basilar membrane located within the inner-ear of cadavers. He found that movement of the basilar membrane resembles that of a ...

  8. Sensorineural hearing loss - Wikipedia

    en.wikipedia.org/wiki/Sensorineural_hearing_loss

    The traveling wave along the basilar membrane peaks at different places along it, depending on whether the sound is low or high frequency. Due to the mass and stiffness of the basilar membrane, low frequency waves peak in the apex, while high frequency sounds peak in the basal end of the cochlea. [13]

  9. Critical band - Wikipedia

    en.wikipedia.org/wiki/Critical_band

    The auditory filter of an impaired ear is flatter and broader compared to a normal ear. This is because the frequency selectivity and the tuning of the basilar membrane is reduced as the outer hair cells are damaged. When only the outer hair cells are damaged the filter is broader on the low frequency side.