Search results
Results from the WOW.Com Content Network
Prime95, also distributed as the command-line utility mprime for FreeBSD and Linux, is a freeware application written by George Woltman. It is the official client of the Great Internet Mersenne Prime Search (GIMPS), a volunteer computing project dedicated to searching for Mersenne primes. It is also used in overclocking to test for system ...
Otherwise, n may or may not be prime. The Solovay–Strassen test is an Euler probable prime test (see PSW [3] page 1003). For each individual value of a, the Solovay–Strassen test is weaker than the Miller–Rabin test. For example, if n = 1905 and a = 2, then the Miller-Rabin test shows that n is composite, but the Solovay–Strassen test ...
These numbers have been proved prime by computer with a primality test for their form, for example the Lucas–Lehmer primality test for Mersenne numbers. “!” is the factorial, “#” is the primorial, and () is the third cyclotomic polynomial, defined as + +.
For example, 3 is a Mersenne prime as it is a prime number and is expressible as 2 2 − 1. [ 1 ] [ 2 ] The exponents p corresponding to Mersenne primes must themselves be prime, although the vast majority of primes p do not lead to Mersenne primes—for example, 2 11 − 1 = 2047 = 23 × 89 .
This is a list of articles about prime numbers. A prime number (or prime) is a natural number greater than 1 that has no positive divisors other than 1 and itself. By Euclid's theorem, there are an infinite number of prime numbers. Subsets of the prime numbers may be generated with various formulas for primes.
The Mersenne number M 3 = 2 3 −1 = 7 is prime. The Lucas–Lehmer test verifies this as follows. Initially s is set to 4 and then is updated 3−2 = 1 time: s ← ((4 × 4) − 2) mod 7 = 0. Since the final value of s is 0, the conclusion is that M 3 is prime. On the other hand, M 11 = 2047 = 23 × 89 is not prime.
The Miller–Rabin primality test or Rabin–Miller primality test is a probabilistic primality test: an algorithm which determines whether a given number is likely to be prime, similar to the Fermat primality test and the Solovay–Strassen primality test. It is of historical significance in the search for a polynomial-time deterministic ...
The AKS primality test (also known as Agrawal–Kayal–Saxena primality test and cyclotomic AKS test) is a deterministic primality-proving algorithm created and published by Manindra Agrawal, Neeraj Kayal, and Nitin Saxena, computer scientists at the Indian Institute of Technology Kanpur, on August 6, 2002, in an article titled "PRIMES is in P ...