Search results
Results from the WOW.Com Content Network
Since the pressure of the standard formation reaction is fixed at 1 bar, the standard formation enthalpy or reaction heat is a function of temperature. For tabulation purposes, standard formation enthalpies are all given at a single temperature: 298 K, represented by the symbol Δ f H ⦵ 298 K.
In some texts, the heats of phase transitions are called latent heats (for example, latent heat of fusion). Molar enthalpy of zinc above 298.15 K and at 1 atm pressure, showing discontinuities at the melting and boiling points. The ΔH°m of zinc is 7323 J/mol, and the ΔH°v is 115 330 J/mol.
J.A. Dean (ed), Lange's Handbook of Chemistry (15th Edition), McGraw-Hill, 1999; Section 6, Thermodynamic Properties; Table 6.3, Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds
For example, the standard enthalpy of combustion of ethane gas refers to the reaction C 2 H 6 (g) + (7/2) O 2 (g) → 2 CO 2 (g) + 3 H 2 O (l). Standard enthalpy of formation is the enthalpy change when one mole of any compound is formed from its constituent elements in their standard states.
The following example illustrates how these values can be derived. The experimental heat of formation of ethane is -20.03 kcal/mol and ethane consists of 2 P groups. Likewise propane (-25.02 kcal/mol) can be written as 2P+S, isobutane (-32.07) as 3P+T and neopentane (-40.18 kcal/mol) as 4P+Q.
If specific heat is expressed per mole of atoms for these substances, none of the constant-volume values exceed, to any large extent, the theoretical Dulong–Petit limit of 25 J⋅mol −1 ⋅K −1 = 3 R per mole of atoms (see the last column of this table). For example, Paraffin has very large molecules and thus a high heat capacity per mole ...
Heats of formation of unstable intermediates like CO (g) and NO (g). Heat changes in phase transitions and allotropic transitions. Lattice energies of ionic substances by constructing Born–Haber cycles if the electron affinity to form the anion is known, or; Electron affinities using a Born–Haber cycle with a theoretical lattice energy.
An enthalpy–entropy chart, also known as the H–S chart or Mollier diagram, plots the total heat against entropy, [1] describing the enthalpy of a thermodynamic system. [2] A typical chart covers a pressure range of 0.01–1000 bar , and temperatures up to 800 degrees Celsius . [ 3 ]