Search results
Results from the WOW.Com Content Network
For example, a program might contain several calls to read files, but the action to perform when a file is not found depends on the meaning (purpose) of the file in question to the program and thus a handling routine for this abnormal situation cannot be located in low-level system code.
An integer programming problem is a mathematical optimization or feasibility program in which some or all of the variables are restricted to be integers.In many settings the term refers to integer linear programming (ILP), in which the objective function and the constraints (other than the integer constraints) are linear.
Flow Shop Ordonnancement. Flow-shop scheduling is an optimization problem in computer science and operations research.It is a variant of optimal job scheduling.In a general job-scheduling problem, we are given n jobs J 1, J 2, ..., J n of varying processing times, which need to be scheduled on m machines with varying processing power, while trying to minimize the makespan – the total length ...
Constraint satisfaction problems (CSPs) are mathematical questions defined as a set of objects whose state must satisfy a number of constraints or limitations.CSPs represent the entities in a problem as a homogeneous collection of finite constraints over variables, which is solved by constraint satisfaction methods.
Matrix chain multiplication is a well-known example that demonstrates utility of dynamic programming. For example, engineering applications often have to multiply a chain of matrices. It is not surprising to find matrices of large dimensions, for example 100×100. Therefore, our task is to multiply matrices ,,....
An example of an A* algorithm in action where nodes are cities connected with roads and h(x) is the straight-line distance to the target point: Key: green: start; blue: goal; orange: visited The A* algorithm has real-world applications.
Notice that the actual constraint graph representing this problem must contain two edges between X and Y since C2 is undirected but the graph representation being used by AC-3 is directed. AC-3 solves the problem by first removing the non-even values from of the domain of X as required by C1 , leaving D( X ) = { 0, 2, 4 }.
A successful solution to this problem must have at least these two properties: It must implement mutual exclusion : only one process can be in the critical section at a time. It must be free of deadlocks : if processes are trying to enter the critical section, one of them must eventually be able to do so successfully, provided no process stays ...