enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Adder (electronics) - Wikipedia

    en.wikipedia.org/wiki/Adder_(electronics)

    The layout of a ripple-carry adder is simple, which allows fast design time; however, the ripple-carry adder is relatively slow, since each full adder must wait for the carry bit to be calculated from the previous full adder. The gate delay can easily be calculated by inspection of the full adder circuit. Each full adder requires three levels ...

  3. Early completion - Wikipedia

    en.wikipedia.org/wiki/Early_completion

    A ripple carry adder is a simple adder circuit, but slow because the carry signal has to propagate through each stage of the adder: This diagram shows a 5-bit ripple carry adder in action. There is a five-stage long carry path, so every time two numbers are added with this adder, it needs to wait for the carry to propagate through all five stages.

  4. Carry-select adder - Wikipedia

    en.wikipedia.org/wiki/Carry-select_adder

    The carry-select adder generally consists of ripple-carry adders and a multiplexer.Adding two n-bit numbers with a carry-select adder is done with two adders (therefore two ripple-carry adders), in order to perform the calculation twice, one time with the assumption of the carry-in being zero and the other assuming it will be one.

  5. Carry-skip adder - Wikipedia

    en.wikipedia.org/wiki/Carry-skip_adder

    A carry-skip adder [nb 1] (also known as a carry-bypass adder) is an adder implementation that improves on the delay of a ripple-carry adder with little effort compared to other adders. The improvement of the worst-case delay is achieved by using several carry-skip adders to form a block-carry-skip adder.

  6. Carry-lookahead adder - Wikipedia

    en.wikipedia.org/wiki/Carry-lookahead_adder

    It is the "rippling" of the carry from right to left that gives the ripple-carry adder its name and slowness. When adding 32-bit integers, for instance, allowance has to be made for the possibility that a carry could have to ripple through every one of the 32 one-bit adders.

  7. Adder–subtractor - Wikipedia

    en.wikipedia.org/wiki/Adder–subtractor

    A 4-bit ripple-carry adder–subtractor based on a 4-bit adder that performs two's complement on A when D = 1 to yield S = B − A. Having an n-bit adder for A and B, then S = A + B. Then, assume the numbers are in two's complement. Then to perform B − A, two's complement theory says to invert each bit of A with a NOT gate then add one.

  8. Propagation delay - Wikipedia

    en.wikipedia.org/wiki/Propagation_delay

    Propagation delay timing diagram of a NOT gate A full adder has an overall gate delay of 3 logic gates from the inputs A and B to the carry output C out shown in red.. Logic gates can have a gate delay ranging from picoseconds to more than 10 nanoseconds, depending on the technology being used. [1]

  9. Talk:Adder (electronics) - Wikipedia

    en.wikipedia.org/wiki/Talk:Adder_(electronics)

    BTW, a carry propagate adder is an adder where the carry is immediately added, as opposite to the carry save adder where two words (carry and sum) are kept separate till the end. All of the adders here described (ripple carry or lookahead) are carry propagate adders. And the carry select adder is a carry-propagate adder.