enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hooke's law - Wikipedia

    en.wikipedia.org/wiki/Hooke's_law

    In physics, Hooke's law is an empirical law which states that the force (F) needed to extend or compress a spring by some distance (x) scales linearly with respect to that distance—that is, F s = kx, where k is a constant factor characteristic of the spring (i.e., its stiffness), and x is small compared to the total possible deformation of the spring.

  3. Elasticity (physics) - Wikipedia

    en.wikipedia.org/wiki/Elasticity_(physics)

    Hooke's law states that the force required to deform elastic objects should be directly proportional to the distance of deformation, regardless of how large that distance becomes. This is known as perfect elasticity , in which a given object will return to its original shape no matter how strongly it is deformed.

  4. Constitutive equation - Wikipedia

    en.wikipedia.org/wiki/Constitutive_equation

    The first constitutive equation (constitutive law) was developed by Robert Hooke and is known as Hooke's law.It deals with the case of linear elastic materials.Following this discovery, this type of equation, often called a "stress-strain relation" in this example, but also called a "constitutive assumption" or an "equation of state" was commonly used.

  5. Linear elasticity - Wikipedia

    en.wikipedia.org/wiki/Linear_elasticity

    Expressed in terms of components with respect to a rectangular Cartesian coordinate system, the governing equations of linear elasticity are: [1]. Equation of motion: , + = where the (), subscript is a shorthand for () / and indicates /, = is the Cauchy stress tensor, is the body force density, is the mass density, and is the displacement.

  6. Spring (device) - Wikipedia

    en.wikipedia.org/wiki/Spring_(device)

    In classical physics, a spring can be seen as a device that stores potential energy, specifically elastic potential energy, by straining the bonds between the atoms of an elastic material. Hooke's law of elasticity states that the extension of an elastic rod (its distended length minus its relaxed length) is linearly proportional to its tension ...

  7. Deformation (engineering) - Wikipedia

    en.wikipedia.org/wiki/Deformation_(engineering)

    Normal metals, ceramics and most crystals show linear elasticity and a smaller elastic range. Linear elastic deformation is governed by Hooke's law, which states: = where σ is the applied stress; E is a material constant called Young's modulus or elastic modulus; ε is the resulting strain.

  8. Young's modulus - Wikipedia

    en.wikipedia.org/wiki/Young's_modulus

    Young's modulus represents the factor of proportionality in Hooke's law, which relates the stress and the strain. However, Hooke's law is only valid under the assumption of an elastic and linear response. Any real material will eventually fail and break when stretched over a very large distance or with a very large force; however, all solid ...

  9. Solid mechanics - Wikipedia

    en.wikipedia.org/wiki/Solid_mechanics

    Elasticity – When an applied stress is removed, the material returns to its undeformed state. Linearly elastic materials, those that deform proportionally to the applied load, can be described by the linear elasticity equations such as Hooke's law .