enow.com Web Search

  1. Ads

    related to: cone formulas explained for kids worksheets full
  2. education.com has been visited by 100K+ users in the past month

    It’s an amazing resource for teachers & homeschoolers - Teaching Mama

Search results

  1. Results from the WOW.Com Content Network
  2. Cone - Wikipedia

    en.wikipedia.org/wiki/Cone

    In the case of lines, the cone extends infinitely far in both directions from the apex, in which case it is sometimes called a double cone. Either half of a double cone on one side of the apex is called a nappe. The axis of a cone is the straight line passing through the apex about which the base (and the whole cone) has a circular symmetry.

  3. Conic section - Wikipedia

    en.wikipedia.org/wiki/Conic_section

    A conic is the curve obtained as the intersection of a plane, called the cutting plane, with the surface of a double cone (a cone with two nappes).It is usually assumed that the cone is a right circular cone for the purpose of easy description, but this is not required; any double cone with some circular cross-section will suffice.

  4. Convex cone - Wikipedia

    en.wikipedia.org/wiki/Convex_cone

    A cone is a convex cone if + belongs to , for any positive scalars , , and any , in . [5] [6] A cone is convex if and only if +.This concept is meaningful for any vector space that allows the concept of "positive" scalar, such as spaces over the rational, algebraic, or (more commonly) the real numbers.

  5. Dual cone and polar cone - Wikipedia

    en.wikipedia.org/wiki/Dual_cone_and_polar_cone

    A cone C in a vector space X is said to be self-dual if X can be equipped with an inner product ⋅,⋅ such that the internal dual cone relative to this inner product is equal to C. [3] Those authors who define the dual cone as the internal dual cone in a real Hilbert space usually say that a cone is self-dual if it is equal to its internal dual.

  6. Cone (topology) - Wikipedia

    en.wikipedia.org/wiki/Cone_(topology)

    The cone over a closed interval I of the real line is a filled-in triangle (with one of the edges being I), otherwise known as a 2-simplex (see the final example). The cone over a polygon P is a pyramid with base P. The cone over a disk is the solid cone of classical geometry (hence the concept's name). The cone over a circle given by

  7. Tangent cone - Wikipedia

    en.wikipedia.org/wiki/Tangent_cone

    The definition of the tangent cone can be extended to abstract algebraic varieties, and even to general Noetherian schemes. Let X be an algebraic variety, x a point of X, and (O X,x, m) be the local ring of X at x. Then the tangent cone to X at x is the spectrum of the associated graded ring of O X,x with respect to the m-adic filtration:

  8. Lambert conformal conic projection - Wikipedia

    en.wikipedia.org/wiki/Lambert_conformal_conic...

    This gives the map two standard parallels. In this way, deviation from unit scale can be minimized within a region of interest that lies largely between the two standard parallels. Unlike other conic projections, no true secant form of the projection exists because using a secant cone does not yield the same scale along both standard parallels. [2]

  9. Hypercone - Wikipedia

    en.wikipedia.org/wiki/Hypercone

    This volume is given by the formula ⁠ 1 / 3 ⁠ π r 4, and is the 4-dimensional equivalent of the solid cone. The ball may be thought of as the 'lid' at the base of the 4-dimensional cone's nappe, and the origin becomes its 'apex'. This shape may be projected into 3-dimensional space in various ways.

  1. Ads

    related to: cone formulas explained for kids worksheets full