enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Levels of adequacy - Wikipedia

    en.wikipedia.org/wiki/Levels_of_adequacy

    Descriptive adequacy The theory formally specifies rules accounting for all observed arrangements of the data. The rules produce all and only the well-formed constructs (relations) of the protocol space.

  3. Descriptive research - Wikipedia

    en.wikipedia.org/wiki/Descriptive_research

    Descriptive science is a category of science that involves descriptive research; that is, observing, recording, describing, and classifying phenomena.Descriptive research is sometimes contrasted with hypothesis-driven research, which is focused on testing a particular hypothesis by means of experimentation.

  4. Process tracing - Wikipedia

    en.wikipedia.org/wiki/Process_tracing

    Process tracing is a qualitative research method used to develop and test theories. [1] [2] [3] Process-tracing can be defined as the following: it is the systematic examination of diagnostic evidence selected and analyzed in light of research questions and hypotheses posed by the investigator (Collier, 2011).

  5. Causal inference - Wikipedia

    en.wikipedia.org/wiki/Causal_inference

    Causal inference is the process of determining the independent, actual effect of a particular phenomenon that is a component of a larger system. The main difference between causal inference and inference of association is that causal inference analyzes the response of an effect variable when a cause of the effect variable is changed.

  6. Lord's paradox - Wikipedia

    en.wikipedia.org/wiki/Lord's_paradox

    Unlike descriptive statements (e.g. "the average height in the US is X"), causal statements involve a comparison between what happened and what would have happened absent an intervention. The latter is unobservable in the real world, a fact that Holland & Rubin term "the fundamental problem of causal inference" (pg. 10).

  7. Causal analysis - Wikipedia

    en.wikipedia.org/wiki/Causal_analysis

    Causal analysis is the field of experimental design and statistics pertaining to establishing cause and effect. [1] Typically it involves establishing four elements: correlation, sequence in time (that is, causes must occur before their proposed effect), a plausible physical or information-theoretical mechanism for an observed effect to follow from a possible cause, and eliminating the ...

  8. Exploratory causal analysis - Wikipedia

    en.wikipedia.org/wiki/Exploratory_causal_analysis

    Causal analysis is the field of experimental design and statistical analysis pertaining to establishing cause and effect. [1] [2] Exploratory causal analysis (ECA), also known as data causality or causal discovery [3] is the use of statistical algorithms to infer associations in observed data sets that are potentially causal under strict assumptions.

  9. Causal research - Wikipedia

    en.wikipedia.org/wiki/Causal_research

    Causal research, is the investigation of (research into) cause-relationships. [ 1 ] [ 2 ] [ 3 ] To determine causality, variation in the variable presumed to influence the difference in another variable(s) must be detected, and then the variations from the other variable(s) must be calculated (s).