Search results
Results from the WOW.Com Content Network
The higher order derivatives can be applied in physics; for example, while the first derivative of the position of a moving object with respect to time is the object's velocity, how the position changes as time advances, the second derivative is the object's acceleration, how the velocity changes as time advances.
Logarithmic differentiation is a technique which uses logarithms and its differentiation rules to simplify certain expressions before actually applying the derivative. [ citation needed ] Logarithms can be used to remove exponents, convert products into sums, and convert division into subtraction — each of which may lead to a simplified ...
Implicit differentiation can be used to compute the n th derivative of a quotient (partially in terms of its first n − 1 derivatives). For example, differentiating = twice (resulting in ″ = ″ + ′ ′ + ″) and then solving for ″ yields ″ = ″ = ″ ″ ′ ′.
velocity is the derivative (with respect to time) of an object's displacement (distance from the original position) acceleration is the derivative (with respect to time) of an object's velocity, that is, the second derivative (with respect to time) of an object's position. For example, if an object's position on a line is given by
The proof of the general Leibniz rule [2]: 68–69 proceeds by induction. Let and be -times differentiable functions.The base case when = claims that: ′ = ′ + ′, which is the usual product rule and is known to be true.
For basic central differences, ... For example, [5] the first derivative can be calculated by the complex-step derivative formula: ...
This, combined with the sum rule for derivatives, shows that differentiation is linear. The rule for integration by parts is derived from the product rule, as is (a weak version of) the quotient rule. (It is a "weak" version in that it does not prove that the quotient is differentiable but only says what its derivative is if it is differentiable.)
For example, in the manifold case, the derivative sends a C r-manifold to a C r−1-manifold (its tangent bundle) and a C r-function to its total derivative. There is one requirement for this to be a functor, namely that the derivative of a composite must be the composite of the derivatives. This is exactly the formula D(f ∘ g) = Df ∘ Dg.