Search results
Results from the WOW.Com Content Network
Biomolecular structure is the intricate folded, three-dimensional shape that is formed by a molecule of protein, DNA, or RNA, and that is important to its function.The structure of these molecules may be considered at any of several length scales ranging from the level of individual atoms to the relationships among entire protein subunits.
Protein quaternary structure [a] is the fourth (and highest) classification level of protein structure.Protein quaternary structure refers to the structure of proteins which are themselves composed of two or more smaller protein chains (also referred to as subunits).
The aim of most protein structure databases is to organize and annotate the protein structures, providing the biological community access to the experimental data in a useful way. Data included in protein structure databases often includes 3D coordinates as well as experimental information, such as unit cell dimensions and angles for x-ray ...
The quaternary structure of nucleic acids is similar to that of protein quaternary structure. Although some of the concepts are not exactly the same, the quaternary structure refers to a higher-level of organization of nucleic acids. Moreover, it refers to interactions of the nucleic acids with other molecules.
This protein was the first to have its structure solved by X-ray crystallography by Max Perutz and Sir John Cowdery Kendrew in 1958, for which they received a Nobel Prize in Chemistry A biomolecule or biological molecule is loosely defined as a molecule produced by a living organism and essential to one or more typically biological processes ...
English: Functional proteins have four levels of structural organization: 1) Primary Structure : the linear structure of amino acids in the polypeptide chain 2) Secondary Structure : hydrogen bonds between peptide group chains in an alpha helix or beta 3) Tertiary Structure : three-dimensional structure of alpha helixes and beta helixes folded
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The carbon dioxide molecules form a carbamate with the four terminal-amine groups of the four protein chains in the deoxy form of the molecule. Thus, one hemoglobin molecule can transport four carbon dioxide molecules back to the lungs, where they are released when the molecule changes back to the oxyhemoglobin form. [6]