Search results
Results from the WOW.Com Content Network
While the term lenticel is usually associated with the breakage of periderm tissue that is associated with gas exchange, it also refers to the lightly colored spots found on apples (a type of pome fruit). "Lenticel" seems to be the most appropriate term to describe both structures mentioned in light of their similar function in gas exchange.
SV channels have been shown to function as cation channels that are permeable to Ca 2+ ions, [35] but their exact functions are not yet known in plants. [39] Guard cells control gas exchange and ion exchange through opening and closing. K+ is one ion that flows both into and out of the cell, causing a positive charge to develop.
Gas exchange is the physical process by which gases move passively by diffusion across a surface. For example, this surface might be the air/water interface of a water body, the surface of a gas bubble in a liquid, a gas-permeable membrane, or a biological membrane that forms the boundary between an organism and its extracellular environment.
The respiratory system (also respiratory apparatus, ventilatory system) is a biological system consisting of specific organs and structures used for gas exchange in animals and plants. The anatomy and physiology that make this happen varies greatly, depending on the size of the organism, the environment in which it lives and its evolutionary ...
Aerenchyma in stem cross section of a typical wetland plant. Aerenchyma or aeriferous parenchyma [1] or lacunae, is a modification of the parenchyma to form a spongy tissue that creates spaces or air channels in the leaves, stems and roots of some plants, which allows exchange of gases between the shoot and the root. [2]
Plant ecophysiology is concerned largely with two topics: mechanisms (how plants sense and respond to environmental change) and scaling or integration (how the responses to highly variable conditions—for example, gradients from full sunlight to 95% shade within tree canopies—are coordinated with one another), and how their collective effect on plant growth and gas exchange can be ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Bark tissues make up by weight between 10 and 20% of woody vascular plants and consists of various biopolymers, tannins, lignin, suberin and polysaccharides. [35] Up to 40% of the bark tissue is made of lignin, which forms an important part of a plant, providing structural support by crosslinking between different polysaccharides, such as ...