Search results
Results from the WOW.Com Content Network
The G-value paradox arises from the lack of correlation between the number of protein-coding genes among eukaryotes and their relative biological complexity. The microscopic nematode Caenorhabditis elegans, for example, is composed of only a thousand cells but has about the same number of genes as a human.
These sequences ultimately lead to the production of all human proteins, although several biological processes (e.g. DNA rearrangements and alternative pre-mRNA splicing) can lead to the production of many more unique proteins than the number of protein-coding genes. The human reference genome contains somewhere between 19,000 and 20,000 ...
The human genome is the total collection of genes in a human being contained in the human chromosome, composed of over three billion nucleotides. [2] In April 2003, the Human Genome Project was able to sequence all the DNA in the human genome, and to discover that the human genome was composed of around 20,000 protein coding genes.
The human genome contains on the order of 20,000 genes which work in concert to produce roughly 1,000,000 distinct proteins. This is due to alternative splicing, and also because cells make important changes to proteins through posttranslational modification after they first construct them, so a given gene serves as the basis for many possible versions of a particular protein.
C-value is the amount, in picograms, of DNA contained within a haploid nucleus (e.g. a gamete) or one half the amount in a diploid somatic cell of a eukaryotic organism. In some cases (notably among diploid organisms), the terms C-value and genome size are used interchangeably; however, in polyploids the C-value may represent two or more genomes contained within the same nucleus.
Sometimes, large regions of chromosomes share gene content similar to other chromosomal regions within the same genome. [44] They are well characterised in the human genome, where they have been used as evidence to support the 2R hypothesis. Sets of duplicated, triplicated and quadruplicated genes, with the related genes on different ...
In genetics, the gene density of an organism's genome is the ratio of the number of genes per number of base pairs, usually written in terms of a million base pairs, or megabase (Mb). The human genome has a gene density of 11-15 genes/Mb, while the genome of the C. elegans roundworm is estimated to have 200.
The Human Genome Project was a landmark genome project. There are numerous related projects that deal with genetic variation (or variation in the encoded proteins), e.g. organized by the following organizations: HUman Genome Organisation (HUGO) -- organizes activities around human genome sequencing, including variants