Search results
Results from the WOW.Com Content Network
Method chaining is a common syntax for invoking multiple method calls in object-oriented programming languages. Each method returns an object, allowing the calls to be chained together in a single statement without requiring variables to store the intermediate results.
A common example is the iostream library in C++, which uses the << or >> operators for the message passing, sending multiple data to the same object and allowing "manipulators" for other method calls. Other early examples include the Garnet system (from 1988 in Lisp) and the Amulet system (from 1994 in C++) which used this style for object ...
Method chaining, also known as named parameter idiom, is a common syntax for invoking multiple method calls in object-oriented programming languages. Each method returns an object, allowing the calls to be chained together in a single statement without requiring variables to store the intermediate results.
Method cascading is much less common than method chaining – it is found only in a handful of object-oriented languages, while chaining is very common. A form of cascading can be implemented using chaining, but this restricts the interface; see comparison with method chaining, below.
In object-oriented design, the chain-of-responsibility pattern is a behavioral design pattern consisting of a source of command objects and a series of processing objects. [1] Each processing object contains logic that defines the types of command objects that it can handle; the rest are passed to the next processing object in the chain.
Uniform Function Call Syntax (UFCS) or Uniform Call Syntax (UCS) or sometimes Universal Function Call Syntax is a programming language feature in D, [1] Nim, [2] Koka, [3] and Effekt [4] that allows any function to be called using the syntax for method calls (as in object-oriented programming), by using the receiver as the first parameter and the given arguments as the remaining parameters. [5]
In object-oriented programming, the iterator pattern is a design pattern in which an iterator is used to traverse a container and access the container's elements. The iterator pattern decouples algorithms from containers; in some cases, algorithms are necessarily container-specific and thus cannot be decoupled.
In software engineering, concurrency patterns are those types of design patterns that deal with the multi-threaded programming paradigm.. Examples of this class of patterns include: