Search results
Results from the WOW.Com Content Network
DNA helicases are frequently attracted to regions of DNA damage and are essential for cellular DNA replication, recombination, repair, and transcription. Chemical manipulation of their molecular processes can change the rate at which cancer cells divide, as well as, the efficiency of transactions and cellular homeostasis.
For DNA polymerases to function, the double-stranded DNA helix has to be unwound to expose two single-stranded DNA templates for replication. DNA helicases are responsible for unwinding the double-stranded DNA during chromosome replication. Helicases in eukaryotic cells are remarkably complex. [106]
Eukaryotes initiate DNA replication at multiple points in the chromosome, so replication forks meet and terminate at many points in the chromosome. Because eukaryotes have linear chromosomes, DNA replication is unable to reach the very end of the chromosomes. Due to this problem, DNA is lost in each replication cycle from the end of the chromosome.
Since new DNA must be packaged into nucleosomes to function properly, synthesis of canonical (non-variant) histone proteins occurs alongside DNA replication. During early S-phase, the cyclin E-Cdk2 complex phosphorylates NPAT , a nuclear coactivator of histone transcription. [ 6 ]
DNA damages, if not repaired, can kill a cell by blocking DNA replication, or transcription of essential genes. When only one strand of the DNA is damaged, the lost information (nucleotide sequence) can ordinarily be recovered by repair processes that remove the damaged sequence and fill the resulting gap by copying from the opposite intact ...
This is an accepted version of this page This is the latest accepted revision, reviewed on 19 December 2024. Cell division producing haploid gametes For the figure of speech, see Meiosis (figure of speech). For the process whereby cell nuclei divide to produce two copies of themselves, see Mitosis. For excessive constriction of the pupils, see Miosis. For the parasitic infestation, see Myiasis ...
The E2F family of transcription factors mediate the expression of a multitude of genes involved in a variety of functions. These include cell proliferation, development, DNA damage response, and apoptosis. It is heavily implicated in the DNA replication pathway through its regulation of genes in the retinoblastoma (Rb) tumor
During meiosis TOP3A and RECQ4A/B helicase antagonize formation of COs in parallel to FANCM helicase. [7] Sequela-Arnaud et al. [ 7 ] suggested that CO numbers are restricted because of the long-term costs of CO recombination, that is, the breaking up of favorable genetic combinations of alleles built up by past natural selection .