Search results
Results from the WOW.Com Content Network
In mathematics, the definite integral ∫ a b f ( x ) d x {\displaystyle \int _{a}^{b}f(x)\,dx} is the area of the region in the xy -plane bounded by the graph of f , the x -axis, and the lines x = a and x = b , such that area above the x -axis adds to the total, and that below the x -axis subtracts from the total.
This can be proved by computing the derivative of the right-hand side of the formula, taking into account that the condition on g is here for insuring the continuity of the integral. This gives the following formulas (where a ≠ 0), which are valid over any interval where f is continuous (over larger intervals, the constant C must be replaced ...
(Note that the value of the expression is independent of the value of n, which is why it does not appear in the integral.) ∫ x x ⋅ ⋅ x ⏟ m d x = ∑ n = 0 m ( − 1 ) n ( n + 1 ) n − 1 n !
Integration by parts is a heuristic rather than a purely mechanical process for solving integrals; given a single function to integrate, the typical strategy is to carefully separate this single function into a product of two functions u(x)v(x) such that the residual integral from the integration by parts formula is easier to evaluate than the ...
In calculus, the Leibniz integral rule for differentiation under the integral sign, named after Gottfried Wilhelm Leibniz, states that for an integral of the form () (,), where < (), < and the integrands are functions dependent on , the derivative of this integral is expressible as (() (,)) = (, ()) (, ()) + () (,) where the partial derivative indicates that inside the integral, only the ...
These reduction formulas can be used for integrands having integer and/or fractional exponents. Special cases of these reductions formulas can be used for integrands of the form ( a + b x n + c x 2 n ) p {\displaystyle \left(a+b\,x^{n}+c\,x^{2n}\right)^{p}} when b 2 − 4 a c = 0 {\displaystyle b^{2}-4\,a\,c=0} by setting m to 0.
For a complete list of integral functions, see list of integrals. Note: x > 0 is assumed throughout this article, and the constant of integration is omitted for simplicity. Integrals involving only logarithmic functions
For a complete list of integral formulas, see lists of integrals. In all formulas the constant a is assumed to be nonzero, and C denotes the constant of integration. For each inverse hyperbolic integration formula below there is a corresponding formula in the list of integrals of inverse trigonometric functions.