Search results
Results from the WOW.Com Content Network
There are two possible outcomes for the measurement of a qubit—usually taken to have the value "0" and "1", like a bit. However, whereas the state of a bit can only be binary (either 0 or 1), the general state of a qubit according to quantum mechanics can arbitrarily be a coherent superposition of all computable states simultaneously. [2]
[1] [2] A logical qubit is a physical or abstract qubit that performs as specified in a quantum algorithm or quantum circuit [3] subject to unitary transformations, has a long enough coherence time to be usable by quantum logic gates (c.f. propagation delay for classical logic gates). [1] [4] [5]
The purpose of quantum computing focuses on building an information theory with the features of quantum mechanics: instead of encoding a binary unit of information (), which can be switched to 1 or 0, a quantum binary unit of information (qubit) can simultaneously turn to be 0 and 1 at the same time, thanks to the phenomenon called superposition.
Global single qubit gates on all the atoms can be done either by applying a microwave field for qubits encoded in the Hyperfine manifold such as Rb and Cs or by applying an RF magnetic field for qubits encoded in the nuclear spin such as Yb and Sr. Focused laser beams can be used to do single-site one qubit rotation using a lambda-type three level Raman scheme (see figure).
For many years, the fields of quantum mechanics and computer science formed distinct academic communities. [1] Modern quantum theory developed in the 1920s to explain perplexing physical phenomena observed at atomic scales, [2] [3] and digital computers emerged in the following decades to replace human computers for tedious calculations. [4]
[3] The number of dimensions of the Hilbert spaces depends on what kind of quantum systems the register is composed of. Qubits are 2-dimensional complex spaces ( C 2 {\displaystyle \mathbb {C} ^{2}} ), while qutrits are 3-dimensional complex spaces ( C 3 {\displaystyle \mathbb {C} ^{3}} ), etc.
1 ebit + 2 bits 1 qubit (i.e. quantum teleportation), where ⩾ {\displaystyle \geqslant } indicates "can do the job of". These principles were formulated around 1993 by Charles H. Bennett .
Common quantum logic gates by name (including abbreviation), circuit form(s) and the corresponding unitary matrices. In quantum computing and specifically the quantum circuit model of computation, a quantum logic gate (or simply quantum gate) is a basic quantum circuit operating on a small number of qubits.