enow.com Web Search

  1. Ad

    related to: parallel lines in hyperbolic geometry meaning

Search results

  1. Results from the WOW.Com Content Network
  2. Hyperbolic geometry - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_geometry

    A triangle immersed in a saddle-shape plane (a hyperbolic paraboloid), along with two diverging ultra-parallel lines. In mathematics, hyperbolic geometry (also called Lobachevskian geometry or Bolyai–Lobachevskian geometry) is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with:

  3. Ultraparallel theorem - Wikipedia

    en.wikipedia.org/wiki/Ultraparallel_theorem

    In the Beltrami-Klein model of the hyperbolic geometry: two ultraparallel lines correspond to two non-intersecting chords. The poles of these two lines are the respective intersections of the tangent lines to the boundary circle at the endpoints of the chords. Lines perpendicular to line l are modeled by chords whose extension passes through ...

  4. Constructions in hyperbolic geometry - Wikipedia

    en.wikipedia.org/wiki/Constructions_in...

    Hyperbolic geometry is a non-Euclidean geometry where the first four axioms of Euclidean geometry are kept but the fifth axiom, the parallel postulate, is changed.The fifth axiom of hyperbolic geometry says that given a line L and a point P not on that line, there are at least two lines passing through P that are parallel to L. [1]

  5. Parallel (geometry) - Wikipedia

    en.wikipedia.org/wiki/Parallel_(geometry)

    Since these are equivalent properties, any one of them could be taken as the definition of parallel lines in Euclidean space, but the first and third properties involve measurement, and so, are "more complicated" than the second. Thus, the second property is the one usually chosen as the defining property of parallel lines in Euclidean geometry ...

  6. Angle of parallelism - Wikipedia

    en.wikipedia.org/wiki/Angle_of_parallelism

    In hyperbolic geometry, angle of parallelism () is the angle at the non-right angle vertex of a right hyperbolic triangle having two asymptotic parallel sides. The angle depends on the segment length a between the right angle and the vertex of the angle of parallelism. Given a point not on a line, drop a perpendicular to the line from the point.

  7. Limiting parallel - Wikipedia

    en.wikipedia.org/wiki/Limiting_parallel

    The two lines through a given point P and limiting parallel to line R.. In neutral or absolute geometry, and in hyperbolic geometry, there may be many lines parallel to a given line through a point not on line ; however, in the plane, two parallels may be closer to than all others (one in each direction of ).

  8. Parallel postulate - Wikipedia

    en.wikipedia.org/wiki/Parallel_postulate

    This postulate does not specifically talk about parallel lines; [1] it is only a postulate related to parallelism. Euclid gave the definition of parallel lines in Book I, Definition 23 [2] just before the five postulates. [3] Euclidean geometry is the study of geometry that satisfies all of Euclid's axioms, including the parallel postulate.

  9. Foundations of geometry - Wikipedia

    en.wikipedia.org/wiki/Foundations_of_geometry

    In hyperbolic geometry these lines are mutually non-intersecting, while in Euclidean geometry they are mutually parallel. Other results, such as the exterior angle theorem , clearly emphasize the difference between elliptic and the geometries that are extensions of absolute geometry.

  1. Ad

    related to: parallel lines in hyperbolic geometry meaning