Search results
Results from the WOW.Com Content Network
Urea-formaldehyde (UF), also known as urea-methanal, so named for its common synthesis pathway and overall structure, [1] is a nontransparent thermosetting resin or polymer. It is produced from urea and formaldehyde. These resins are used in adhesives, plywood, particle board, medium-density fibreboard (MDF), and molded objects.
Urea plant using ammonium carbamate briquettes, Fixed Nitrogen Research Laboratory, ca. 1930 Carl Bosch, 1927. The Bosch–Meiser process is an industrial process, which was patented in 1922 [1] and named after its discoverers, the German chemists Carl Bosch and Wilhelm Meiser [2] for the large-scale manufacturing of urea, a valuable nitrogenous chemical.
Two steps in formation of urea-formaldehyde resin, which is widely used in the production of particle board When condensed with phenol , urea , or melamine , formaldehyde produces, respectively, hard thermoset phenol formaldehyde resin, urea formaldehyde resin, and melamine resin.
The basic reaction of urea and formaldehyde to create a urea-formaldehyde resin, followed by the condensation [12] Urea-formaldehyde resins (UF) are a class of impregnation resins for wood modification made by reacting urea with formaldehyde. This resin can be polymerized after impregnation into the wood substrate by oven-curing.
The energy consumption and greenhouse gas emissions associated with the production of Urea-formaldehyde are lower than those of Phenol formaldehyde adhesives. But Urea-formaldehyde adhesive is judged to have a nearly 50% higher life cycle impact than Phenol formaldehyde mainly because of acid based emmissions during its production process. [15 ...
This page was last edited on 20 February 2006, at 03:17 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
The structure of the molecule of urea is O=C(−NH 2) 2.The urea molecule is planar when in a solid crystal because of sp 2 hybridization of the N orbitals. [8] [9] It is non-planar with C 2 symmetry when in the gas phase [10] or in aqueous solution, [9] with C–N–H and H–N–H bond angles that are intermediate between the trigonal planar angle of 120° and the tetrahedral angle of 109.5°.
In situ polymerization of such formaldehyde systems usually involves the emulsification of an oil-phase in water. Then, water-soluble urea/melamine formaldehyde resin monomers are added, which are allowed to disperse. The initiation step occurs when acid is added to lower the pH of the mixture.