Search results
Results from the WOW.Com Content Network
A tiling with squares whose side lengths are successive Fibonacci numbers: 1, 1, 2, 3, 5, 8, 13 and 21. The Fibonacci numbers were first described in Indian mathematics as early as 200 BC in work by Pingala on enumerating possible patterns of Sanskrit poetry formed from syllables of two lengths.
An example is 47, because the Fibonacci sequence starting with 4 and 7 (4, 7, 11, 18, 29, 47) reaches 47. A repfigit can be a tribonacci sequence if there are 3 digits in the number, a tetranacci number if the number has four digits, etc. The first few repfigits are:
From a group and a field (or more generally a ring), the group ring [] is defined as the set of all finite formal -linear combinations of elements of − that is, an element of [] is of the form =, where = for all but finitely many so that the linear combination is finite.
A prime divides if and only if p is congruent to ±1 modulo 5, and p divides + if and only if it is congruent to ±2 modulo 5. (For p = 5, F 5 = 5 so 5 divides F 5) . Fibonacci numbers that have a prime index p do not share any common divisors greater than 1 with the preceding Fibonacci numbers, due to the identity: [6]
Plot of the first 10,000 Pisano periods. In number theory, the nth Pisano period, written as π (n), is the period with which the sequence of Fibonacci numbers taken modulo n repeats.
For instance, 1/3+1/4 = 7/12, so a notation like would represent the number that would now more commonly be written as the mixed number , or simply the improper fraction . Notation of this form can be distinguished from sequences of numerators and denominators sharing a fraction bar by the visible break in the bar.
Repeat the previous steps, substituting the remainder for N, until a remainder of 0 is reached. Place an additional 1 after the rightmost digit in the code word. To decode a code word, remove the final "1", assign the remaining the values 1,2,3,5,8,13... (the Fibonacci numbers) to the bits in the code word, and sum the values of the "1" bits.
An integer sequence is computable if there exists an algorithm that, given n, calculates a n, for all n > 0. The set of computable integer sequences is countable.The set of all integer sequences is uncountable (with cardinality equal to that of the continuum), and so not all integer sequences are computable.