Search results
Results from the WOW.Com Content Network
It is also possible to use depth-first search to linearly order the vertices of a graph or tree. There are four possible ways of doing this: A preordering is a list of the vertices in the order that they were first visited by the depth-first search algorithm. This is a compact and natural way of describing the progress of the search, as was ...
Graph traversal is a subroutine in most graph algorithms. The goal of a graph traversal algorithm is to visit (and / or process) every node of a graph. Graph traversal algorithms, like breadth-first search and depth-first search, are analyzed using the von Neumann model, which assumes uniform memory access cost. This view neglects the fact ...
Adjacency list [2] Vertices are stored as records or objects, and every vertex stores a list of adjacent vertices. This data structure allows the storage of additional data on the vertices. Additional data can be stored if edges are also stored as objects, in which case each vertex stores its incident edges and each edge stores its incident ...
A depth-first search (DFS) is an algorithm for traversing a finite graph. DFS visits the child vertices before visiting the sibling vertices; that is, it traverses the depth of any particular path before exploring its breadth. A stack (often the program's call stack via recursion) is generally used when implementing the algorithm.
The main operation performed by the adjacency list data structure is to report a list of the neighbors of a given vertex. Using any of the implementations detailed above, this can be performed in constant time per neighbor. In other words, the total time to report all of the neighbors of a vertex v is proportional to the degree of v.
If you have only one (or a few) queries to make, it may be more efficient to forgo the use of more complex data structures and compute the reachability of the desired pair directly. This can be accomplished in linear time using algorithms such as breadth first search or iterative deepening depth-first search. [4]
Sort the edge list lexicographically. (Here we assume that the nodes of the tree are ordered, and that the root is the first element in this order.) Construct adjacency lists for each node (called next) and a map from nodes to the first entries of the adjacency lists (called first): For each edge (u,v) in the list, do in parallel:
The basic idea of the algorithm is this: a depth-first search (DFS) begins from an arbitrary start node (and subsequent depth-first searches are conducted on any nodes that have not yet been found). As usual with depth-first search, the search visits every node of the graph exactly once, refusing to revisit any node that has already been visited.